Abstract

Y3Al5O12 single crystals codoped with ytterbium and chromium were successfully grown by the Czochralski method. The effects of growth atmosphere, annealing temperature, the initial Cr content in the melt, and Ca/Cr ratio on the absorption characteristics of tetravalent Cr4+ have been evaluated. The fluorescence lifetimes of Cr, Yb:YAG with various concentrations of Cr and Yb:YAG were measured. The optimum annealing temperature, initial Cr content in the melt, and Ca/Cr ratio are given.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Kochner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1992), pp. 489–493.
  2. J. A. Morris and C. R. Pollock, “Passive Q-switching of a diode pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15, 440–442 (1990).
    [Crossref] [PubMed]
  3. S. Zhou, K. K. Lee, and Y. C. Chen, “Monolithic self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 511–512 (1993).
    [Crossref] [PubMed]
  4. W. Chen, K. Spariosu, and R. Stultz, “Cr4+:GSGG saturable absorber Q-switched for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
    [Crossref]
  5. Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
    [Crossref]
  6. J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, J. Xu, W. Chen, and X. L. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
    [Crossref]
  7. J. Dong, P. Z. Deng, Y. T. Lu, Y. H. Zhang, Y. P. Liu, J. Xu, and W. Chen, “Diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
    [Crossref]
  8. W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1297 (2000).
    [Crossref]
  9. D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
    [Crossref]
  10. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
    [Crossref]
  11. A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, “Passive Q-switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser,” Opt. Lett. 25, 616–618 (2000).
    [Crossref]
  12. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).
  13. J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, G. S. Huang, and F. X. Gan, “Performance of the self-Q-switched Cr, Yb:YAG laser,” Chin. Phys. Lasers 19, 342–344 (2002).
  14. Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, “Monolithic Q-Switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
    [Crossref]
  15. P. Z. Yang, P. Z. Deng, Z. W. Yin, and Y. L. Tian, “Growth of high-quality single crystal of 30 at.% Yb:YAG and its laser performance,” J. Cryst. Growth 216, 348–351 (2000).
    [Crossref]
  16. B. M. Tissue, W. Y. Jia, L. Z. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium garnet single-crystal fibers using a divaleng codopant,” J. Appl. Phys. 70, 3775–3777 (1991).
    [Crossref]
  17. J. Dong, P. Z. Deng, and J. Xu, “The growth of Cr4+, Yb3+:yttrium aluminum garnet (YAG) crystal and its absorption spectra properties,” J. Cryst. Growth 203, 163–167 (1999).
    [Crossref]
  18. J. Dong, P. Z. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr, Yb:YAG crystal,” Opt. Commun. 170, 255–258 (1999).
    [Crossref]
  19. R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
    [Crossref]
  20. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state media,” Opt. Commun. 19, 1343–1345 (1994).
  21. J. Dong and P. Z. Deng, “The effect of Cr concentration on emission cross-section and fluorescence lifetime in Cr, Yb:YAG crystal,” J. Lumin. 104, 151–158 (2003).
    [Crossref]

2003 (2)

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, “Monolithic Q-Switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[Crossref]

J. Dong and P. Z. Deng, “The effect of Cr concentration on emission cross-section and fluorescence lifetime in Cr, Yb:YAG crystal,” J. Lumin. 104, 151–158 (2003).
[Crossref]

2002 (2)

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, G. S. Huang, and F. X. Gan, “Performance of the self-Q-switched Cr, Yb:YAG laser,” Chin. Phys. Lasers 19, 342–344 (2002).

2001 (2)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, J. Xu, W. Chen, and X. L. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
[Crossref]

2000 (4)

J. Dong, P. Z. Deng, Y. T. Lu, Y. H. Zhang, Y. P. Liu, J. Xu, and W. Chen, “Diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[Crossref]

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1297 (2000).
[Crossref]

A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, “Passive Q-switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser,” Opt. Lett. 25, 616–618 (2000).
[Crossref]

P. Z. Yang, P. Z. Deng, Z. W. Yin, and Y. L. Tian, “Growth of high-quality single crystal of 30 at.% Yb:YAG and its laser performance,” J. Cryst. Growth 216, 348–351 (2000).
[Crossref]

1999 (2)

J. Dong, P. Z. Deng, and J. Xu, “The growth of Cr4+, Yb3+:yttrium aluminum garnet (YAG) crystal and its absorption spectra properties,” J. Cryst. Growth 203, 163–167 (1999).
[Crossref]

J. Dong, P. Z. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr, Yb:YAG crystal,” Opt. Commun. 170, 255–258 (1999).
[Crossref]

1995 (1)

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[Crossref]

1994 (1)

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state media,” Opt. Commun. 19, 1343–1345 (1994).

1993 (2)

S. Zhou, K. K. Lee, and Y. C. Chen, “Monolithic self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 511–512 (1993).
[Crossref] [PubMed]

W. Chen, K. Spariosu, and R. Stultz, “Cr4+:GSGG saturable absorber Q-switched for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[Crossref]

1991 (1)

B. M. Tissue, W. Y. Jia, L. Z. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium garnet single-crystal fibers using a divaleng codopant,” J. Appl. Phys. 70, 3775–3777 (1991).
[Crossref]

1990 (2)

J. A. Morris and C. R. Pollock, “Passive Q-switching of a diode pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15, 440–442 (1990).
[Crossref] [PubMed]

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[Crossref]

1981 (1)

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[Crossref]

Abdolvand, A.

Bednarz, J. P.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[Crossref]

Birnbaum, M.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[Crossref]

Bour, D. P.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[Crossref]

Chen, W.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, J. Xu, W. Chen, and X. L. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
[Crossref]

J. Dong, P. Z. Deng, Y. T. Lu, Y. H. Zhang, Y. P. Liu, J. Xu, and W. Chen, “Diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[Crossref]

W. Chen, K. Spariosu, and R. Stultz, “Cr4+:GSGG saturable absorber Q-switched for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[Crossref]

Chen, Y. C.

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, “Monolithic Q-Switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[Crossref]

S. Zhou, K. K. Lee, and Y. C. Chen, “Monolithic self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 511–512 (1993).
[Crossref] [PubMed]

Deng, P. Z.

J. Dong and P. Z. Deng, “The effect of Cr concentration on emission cross-section and fluorescence lifetime in Cr, Yb:YAG crystal,” J. Lumin. 104, 151–158 (2003).
[Crossref]

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, G. S. Huang, and F. X. Gan, “Performance of the self-Q-switched Cr, Yb:YAG laser,” Chin. Phys. Lasers 19, 342–344 (2002).

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, J. Xu, W. Chen, and X. L. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
[Crossref]

J. Dong, P. Z. Deng, Y. T. Lu, Y. H. Zhang, Y. P. Liu, J. Xu, and W. Chen, “Diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[Crossref]

P. Z. Yang, P. Z. Deng, Z. W. Yin, and Y. L. Tian, “Growth of high-quality single crystal of 30 at.% Yb:YAG and its laser performance,” J. Cryst. Growth 216, 348–351 (2000).
[Crossref]

J. Dong, P. Z. Deng, and J. Xu, “The growth of Cr4+, Yb3+:yttrium aluminum garnet (YAG) crystal and its absorption spectra properties,” J. Cryst. Growth 203, 163–167 (1999).
[Crossref]

J. Dong, P. Z. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr, Yb:YAG crystal,” Opt. Commun. 170, 255–258 (1999).
[Crossref]

Dong, J.

J. Dong and P. Z. Deng, “The effect of Cr concentration on emission cross-section and fluorescence lifetime in Cr, Yb:YAG crystal,” J. Lumin. 104, 151–158 (2003).
[Crossref]

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, G. S. Huang, and F. X. Gan, “Performance of the self-Q-switched Cr, Yb:YAG laser,” Chin. Phys. Lasers 19, 342–344 (2002).

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, J. Xu, W. Chen, and X. L. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
[Crossref]

J. Dong, P. Z. Deng, Y. T. Lu, Y. H. Zhang, Y. P. Liu, J. Xu, and W. Chen, “Diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[Crossref]

J. Dong, P. Z. Deng, and J. Xu, “The growth of Cr4+, Yb3+:yttrium aluminum garnet (YAG) crystal and its absorption spectra properties,” J. Cryst. Growth 203, 163–167 (1999).
[Crossref]

J. Dong, P. Z. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr, Yb:YAG crystal,” Opt. Commun. 170, 255–258 (1999).
[Crossref]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

Ettenberg, M.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[Crossref]

Fabian, K. B.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[Crossref]

Fan, T. Y.

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state media,” Opt. Commun. 19, 1343–1345 (1994).

Gan, F. X.

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, G. S. Huang, and F. X. Gan, “Performance of the self-Q-switched Cr, Yb:YAG laser,” Chin. Phys. Lasers 19, 342–344 (2002).

Gilbert, D. B.

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[Crossref]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

Huang, G. S.

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, G. S. Huang, and F. X. Gan, “Performance of the self-Q-switched Cr, Yb:YAG laser,” Chin. Phys. Lasers 19, 342–344 (2002).

Huang, M. F.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[Crossref]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

Jia, W. Y.

B. M. Tissue, W. Y. Jia, L. Z. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium garnet single-crystal fibers using a divaleng codopant,” J. Appl. Phys. 70, 3775–3777 (1991).
[Crossref]

Kalisky, Y.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[Crossref]

Kravchik, L.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1297 (2000).
[Crossref]

Kuleshov, N. V.

Kuo, Y. K.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[Crossref]

Labbe, C.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

Lagatsky, A. A.

Lee, K. K.

Liu, Y. P.

Lu, L. Z.

B. M. Tissue, W. Y. Jia, L. Z. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium garnet single-crystal fibers using a divaleng codopant,” J. Appl. Phys. 70, 3775–3777 (1991).
[Crossref]

Lu, Y. T.

Morris, J. A.

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

Pollock, C. R.

Rachum, U.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

Reisfeld, R.

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[Crossref]

Spariosu, K.

W. Chen, K. Spariosu, and R. Stultz, “Cr4+:GSGG saturable absorber Q-switched for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[Crossref]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

Stultz, R.

W. Chen, K. Spariosu, and R. Stultz, “Cr4+:GSGG saturable absorber Q-switched for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[Crossref]

Sumida, D. S.

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state media,” Opt. Commun. 19, 1343–1345 (1994).

Thai, Q.

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, “Monolithic Q-Switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[Crossref]

Tian, Y. L.

P. Z. Yang, P. Z. Deng, Z. W. Yin, and Y. L. Tian, “Growth of high-quality single crystal of 30 at.% Yb:YAG and its laser performance,” J. Cryst. Growth 216, 348–351 (2000).
[Crossref]

Tissue, B. M.

B. M. Tissue, W. Y. Jia, L. Z. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium garnet single-crystal fibers using a divaleng codopant,” J. Appl. Phys. 70, 3775–3777 (1991).
[Crossref]

Waichman, K.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

Xie, X. L.

Xu, J.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, J. Xu, W. Chen, and X. L. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt. 40, 4303–4307 (2001).
[Crossref]

J. Dong, P. Z. Deng, Y. T. Lu, Y. H. Zhang, Y. P. Liu, J. Xu, and W. Chen, “Diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[Crossref]

J. Dong, P. Z. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr, Yb:YAG crystal,” Opt. Commun. 170, 255–258 (1999).
[Crossref]

J. Dong, P. Z. Deng, and J. Xu, “The growth of Cr4+, Yb3+:yttrium aluminum garnet (YAG) crystal and its absorption spectra properties,” J. Cryst. Growth 203, 163–167 (1999).
[Crossref]

Yang, P. Z.

P. Z. Yang, P. Z. Deng, Z. W. Yin, and Y. L. Tian, “Growth of high-quality single crystal of 30 at.% Yb:YAG and its laser performance,” J. Cryst. Growth 216, 348–351 (2000).
[Crossref]

Yen, W. M.

B. M. Tissue, W. Y. Jia, L. Z. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium garnet single-crystal fibers using a divaleng codopant,” J. Appl. Phys. 70, 3775–3777 (1991).
[Crossref]

Yin, Z. W.

P. Z. Yang, P. Z. Deng, Z. W. Yin, and Y. L. Tian, “Growth of high-quality single crystal of 30 at.% Yb:YAG and its laser performance,” J. Cryst. Growth 216, 348–351 (2000).
[Crossref]

Zhang, Y. H.

Zhou, S.

Zhou, S. H.

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, “Monolithic Q-Switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[Crossref]

Zhou, Y.

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, “Monolithic Q-Switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[Crossref]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[Crossref]

Chin. Phys. Lasers (1)

J. Dong, P. Z. Deng, Y. P. Liu, Y. H. Zhang, G. S. Huang, and F. X. Gan, “Performance of the self-Q-switched Cr, Yb:YAG laser,” Chin. Phys. Lasers 19, 342–344 (2002).

IEEE J. Quantum Electron. (2)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[Crossref]

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1297 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990).
[Crossref]

J. Appl. Phys. (1)

B. M. Tissue, W. Y. Jia, L. Z. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium garnet single-crystal fibers using a divaleng codopant,” J. Appl. Phys. 70, 3775–3777 (1991).
[Crossref]

J. Cryst. Growth (2)

J. Dong, P. Z. Deng, and J. Xu, “The growth of Cr4+, Yb3+:yttrium aluminum garnet (YAG) crystal and its absorption spectra properties,” J. Cryst. Growth 203, 163–167 (1999).
[Crossref]

P. Z. Yang, P. Z. Deng, Z. W. Yin, and Y. L. Tian, “Growth of high-quality single crystal of 30 at.% Yb:YAG and its laser performance,” J. Cryst. Growth 216, 348–351 (2000).
[Crossref]

J. Lumin. (1)

J. Dong and P. Z. Deng, “The effect of Cr concentration on emission cross-section and fluorescence lifetime in Cr, Yb:YAG crystal,” J. Lumin. 104, 151–158 (2003).
[Crossref]

Opt. Commun. (4)

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state media,” Opt. Commun. 19, 1343–1345 (1994).

J. Dong, P. Z. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr, Yb:YAG crystal,” Opt. Commun. 170, 255–258 (1999).
[Crossref]

Y. Zhou, Q. Thai, Y. C. Chen, and S. H. Zhou, “Monolithic Q-Switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[Crossref]

W. Chen, K. Spariosu, and R. Stultz, “Cr4+:GSGG saturable absorber Q-switched for the ruby laser,” Opt. Commun. 104, 71–74 (1993).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (Amsterdam, Neth.) (1)

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Z. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. (Amsterdam, Neth.) 19, 403–413 (2002).

Other (1)

W. Kochner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1992), pp. 489–493.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical absorption spectra of a 0.05%-Cr, 0.1%-Ca Yb:YAG crystal grown in nitrogen and nitrogen plus oxygen atmospheres.

Fig. 2
Fig. 2

Optical absorption spectra of a 0.05%-Cr, 0.1%-Ca Yb:YAG crystal before and after annealing in air at 1673 K for 20 h.

Fig. 3
Fig. 3

Absorption coefficients of Cr4+ in a 0.05%-Cr, 0.1%-Ca Yb:YAG crystal at 1.03 µm after annealing in air at several temperatures for 20 h.

Fig. 4
Fig. 4

Optical absorption spectra of Yb:YAG and Cr, Yb:YAG crystals with various chromium concentrations after annealing in air at 1673 K for 20 h.

Fig. 5
Fig. 5

Absorption coefficients of Cr4+ in Cr, Yb:YAG crystals at 1.03 µm with several chromium concentrations after annealing in air at 1673 K for 20 h.

Fig. 6
Fig. 6

Fluorescence lifetimes of Yb:YAG and Cr, Yb:YAG crystals as a function of chromium concentration.

Fig. 7
Fig. 7

Energy-transfer efficiency from Yb3+ to Cr4+ and variation of quantum efficiency with the concentration of chromium ions in Cr, Yb:YAG crystals.

Fig. 8
Fig. 8

Absorption coefficients of Cr4+ in Cr, Yb:YAG crystals at 1.03 µm for several Ca/Cr ratios after annealing in air at 1673 K for 20 h.

Tables (1)

Tables Icon

Table 1 Characteristics of As-Grown Yb:YAG and Cr, Yb:YAG Single Crystals

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η=1-τ/τ0,
ηQ=τf/τr,

Metrics