Abstract

Because many sources of radiation in the submillimeter–terahertz have relatively low power, the development of sensitive detectors has been important. Equally important is the selection of detector and source methodologies appropriate for specific scientific or technological applications. Discussed is the effect of Bose–Einstein statistics, blackbody mode structure, and detector optical and electronic bandwidths to develop closed-form expressions for the contributions from experimental backgrounds to overall system noise. The results obtained allay the oft-expressed concerns that many important experiments, especially those conducted at elevated temperatures or in harsh environments such as plasmas, are either difficult or not possible with high-resolution cw systems. To the contrary, in the large majority of cases this excess background noise is not observable. Experimental examples are provided.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. King and W. Gordy, “One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O,” Phys. Rev. 93, 407–412 (1954).
    [CrossRef]
  2. W. Gordy, “Microwave spectroscopy in the region of 4–0.4 millimeters,” J. Pure Appl. Chem. 2, 403–434 (1965).
  3. P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37-mm wavelength,” Phys. Rev. Lett. 25, 1397–1399 (1970).
    [CrossRef]
  4. A. F. Krupnov and A. V. Burenin, “New methods in submillimeter microwave spectroscopy,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1976), pp. 93–126.
  5. P. Helminger, J. K. Messer, and F. C. De Lucia, “Continuously tunable coherent spectroscopy for the 0.1- to 1.0-THz region,” Appl. Phys. Lett. 42, 309–310 (1983).
    [CrossRef]
  6. G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8, 241–253 (1995).
    [CrossRef]
  7. E. Herbst, “Chemistry in the interstellar medium,” Annu. Rev. Phys. Chem. 46, 27–53 (1995).
    [CrossRef]
  8. J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
    [CrossRef]
  9. W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd. ed. (Wiley, New York, 1984), Vol. 18, p. 929.
  10. F. C. De Lucia, “The study of laser processes by millimeter and submillimeter microwave spectroscopy,” Appl. Phys. Lett. 31, 606–608 (1977).
    [CrossRef]
  11. D. D. Skatrud and F. C. De Lucia, “Dynamics of the HCN discharge laser,” Appl. Phys. Lett. 46, 631–633 (1985).
    [CrossRef]
  12. A. Carrington, Microwave Spectroscopy of Free Radicals (Academic, London, 1974).
  13. A. Charo and F. C. De Lucia, “The millimeter and submillimeter spectrum of CF2 and its production in a dc glow discharge,” J. Mol. Spectrosc. 94, 363–368 (1982).
    [CrossRef]
  14. R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
    [CrossRef]
  15. F. C. van den Heuvel and A. Dynamus, “Observation of far-infrared transitions of HCO+, CO+, and NH2+,” Chem. Phys. Lett. 92, 219–222 (1982).
    [CrossRef]
  16. F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
    [CrossRef]
  17. C. Demuyuck, “Millimeter-wave spectroscopy in electric discharges. Rare molecules show themselves only if you look in the other direction,” J. Mol. Spectrosc. 168, 215 (1994).
    [CrossRef]
  18. F. C. De Lucia, “Spectroscopy in the terahertz spectral region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer, Berlin, 2003), pp. 39–154.
  19. D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photonics News 14, 48–53 (2003).
    [CrossRef]
  20. M. van Exter, C. Fattinger, and D. R. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
    [CrossRef]
  21. D. R. Grischkowsky, “An ultrafast optoelectronic THz beam system: applications to time-domain spectroscopy,” Opt. Photonics News 3, 21–28 (1992).
    [CrossRef]
  22. D. R. Grischkowsky, “Nonlinear generation of sub-psec pulses of THz electromagnetic radiation by optoelectronics—application to time-domain spectroscopy,” in Frontiers in Nonlinear Optics, H. Walther, N. Koroteev, and M. O. Scully, eds. (Institute of Physics, London, 1993).
  23. R. A. Cheville and D. R. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648 (1995).
    [CrossRef] [PubMed]
  24. H. Harde, R. A. Cheville, and D. R. Grischkowsky, “THz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
    [CrossRef]
  25. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
    [CrossRef]
  26. R. A. Cheville, “Observation of pure rotational absorption spectra in the ν2 band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
    [CrossRef]
  27. R. A. Cheville and D. R. Grischkowsky, “Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor,” J. Opt. Soc. Am. B 16, 317–322 (1999).
    [CrossRef]
  28. H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
    [CrossRef]
  29. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
    [CrossRef]
  30. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
    [CrossRef]
  31. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  32. H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
    [CrossRef]
  33. H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
    [CrossRef]
  34. M. A. Anderson and L. M. Ziurys, “The millimeter/submillimeter spectrum and rotational rest frequencies of MgCH3 (X 2A1),” Astrophys. J. Lett. 452, L157 (1995).
    [CrossRef]
  35. S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
    [CrossRef]
  36. G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
    [CrossRef]
  37. F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).
  38. D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
    [CrossRef]
  39. J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
    [CrossRef]
  40. S. Viciani, F. Marin, and P. De Natale, “Noise characterization of a coherent tunable far infrared spectrometer,” Rev. Sci. Instrum. 69, 372–376 (1998).
    [CrossRef]
  41. J. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, Mass., 1960).
  42. W. B. Lewis, “Fluctuations in streams of thermal radiation,” Proc. Phys. Soc. 59, 34–40 (1947).
    [CrossRef]
  43. E. H. Putley, “The ultimate sensitivity of sub-mm detectors,” Infrared Phys. 4, 1–8 (1964).
    [CrossRef]
  44. W. L. Wolfe and G. J. Zissis, The Infrared Handbook (U.S. Office of Naval Research, Washington, D.C., 1978).
  45. E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
    [CrossRef]
  46. L. E. Snyder and D. Buhl, “Detection of new stellar sources of vibrationally excited silicon monoxide maser emission at 6.95 millimeters,” Astrophys. J. 197, 329–340 (1975).
    [CrossRef]
  47. J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
    [CrossRef]
  48. F. C. De Lucia and P. Helminger, “Millimeter spectroscopy of active laser plasmas: the excited vibrational states of HCN,” J. Chem. Phys. 67, 4262–4267 (1977).
    [CrossRef]
  49. D. D. Skatrud and F. C. De Lucia, “Excitation, inversion, and relaxation mechanisms of the HCN FIR discharge laser,” Appl. Phys. A 35, 179–193 (1984).
    [CrossRef]
  50. G. W. Chantry, Submillimeter Spectroscopy (Academic, New York, 1971).

2003 (1)

D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photonics News 14, 48–53 (2003).
[CrossRef]

2002 (2)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[CrossRef]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

2001 (3)

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
[CrossRef]

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

1999 (2)

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

R. A. Cheville and D. R. Grischkowsky, “Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor,” J. Opt. Soc. Am. B 16, 317–322 (1999).
[CrossRef]

1998 (3)

R. A. Cheville, “Observation of pure rotational absorption spectra in the ν2 band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

S. Viciani, F. Marin, and P. De Natale, “Noise characterization of a coherent tunable far infrared spectrometer,” Rev. Sci. Instrum. 69, 372–376 (1998).
[CrossRef]

1997 (2)

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

H. Harde, R. A. Cheville, and D. R. Grischkowsky, “THz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

1995 (5)

R. A. Cheville and D. R. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648 (1995).
[CrossRef] [PubMed]

F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

M. A. Anderson and L. M. Ziurys, “The millimeter/submillimeter spectrum and rotational rest frequencies of MgCH3 (X 2A1),” Astrophys. J. Lett. 452, L157 (1995).
[CrossRef]

G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8, 241–253 (1995).
[CrossRef]

E. Herbst, “Chemistry in the interstellar medium,” Annu. Rev. Phys. Chem. 46, 27–53 (1995).
[CrossRef]

1994 (2)

C. Demuyuck, “Millimeter-wave spectroscopy in electric discharges. Rare molecules show themselves only if you look in the other direction,” J. Mol. Spectrosc. 168, 215 (1994).
[CrossRef]

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

1992 (1)

D. R. Grischkowsky, “An ultrafast optoelectronic THz beam system: applications to time-domain spectroscopy,” Opt. Photonics News 3, 21–28 (1992).
[CrossRef]

1991 (1)

J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
[CrossRef]

1989 (1)

1985 (1)

D. D. Skatrud and F. C. De Lucia, “Dynamics of the HCN discharge laser,” Appl. Phys. Lett. 46, 631–633 (1985).
[CrossRef]

1984 (2)

D. D. Skatrud and F. C. De Lucia, “Excitation, inversion, and relaxation mechanisms of the HCN FIR discharge laser,” Appl. Phys. A 35, 179–193 (1984).
[CrossRef]

H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
[CrossRef]

1983 (3)

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
[CrossRef]

P. Helminger, J. K. Messer, and F. C. De Lucia, “Continuously tunable coherent spectroscopy for the 0.1- to 1.0-THz region,” Appl. Phys. Lett. 42, 309–310 (1983).
[CrossRef]

1982 (2)

F. C. van den Heuvel and A. Dynamus, “Observation of far-infrared transitions of HCO+, CO+, and NH2+,” Chem. Phys. Lett. 92, 219–222 (1982).
[CrossRef]

A. Charo and F. C. De Lucia, “The millimeter and submillimeter spectrum of CF2 and its production in a dc glow discharge,” J. Mol. Spectrosc. 94, 363–368 (1982).
[CrossRef]

1981 (1)

H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
[CrossRef]

1977 (3)

F. C. De Lucia, “The study of laser processes by millimeter and submillimeter microwave spectroscopy,” Appl. Phys. Lett. 31, 606–608 (1977).
[CrossRef]

F. C. De Lucia and P. Helminger, “Millimeter spectroscopy of active laser plasmas: the excited vibrational states of HCN,” J. Chem. Phys. 67, 4262–4267 (1977).
[CrossRef]

E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
[CrossRef]

1975 (2)

L. E. Snyder and D. Buhl, “Detection of new stellar sources of vibrationally excited silicon monoxide maser emission at 6.95 millimeters,” Astrophys. J. 197, 329–340 (1975).
[CrossRef]

R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
[CrossRef]

1970 (1)

P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37-mm wavelength,” Phys. Rev. Lett. 25, 1397–1399 (1970).
[CrossRef]

1965 (1)

W. Gordy, “Microwave spectroscopy in the region of 4–0.4 millimeters,” J. Pure Appl. Chem. 2, 403–434 (1965).

1964 (1)

E. H. Putley, “The ultimate sensitivity of sub-mm detectors,” Infrared Phys. 4, 1–8 (1964).
[CrossRef]

1954 (1)

W. C. King and W. Gordy, “One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O,” Phys. Rev. 93, 407–412 (1954).
[CrossRef]

1947 (1)

W. B. Lewis, “Fluctuations in streams of thermal radiation,” Proc. Phys. Soc. 59, 34–40 (1947).
[CrossRef]

Albert, S.

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

Anderson, M. A.

M. A. Anderson and L. M. Ziurys, “The millimeter/submillimeter spectrum and rotational rest frequencies of MgCH3 (X 2A1),” Astrophys. J. Lett. 452, L157 (1995).
[CrossRef]

Anderson, T.

J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
[CrossRef]

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[CrossRef]

Belov, S. P.

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

Bettens, R. P. A.

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

Blake, G. A.

F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
[CrossRef]

Boyles, M. A.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Brinza, D. E.

H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
[CrossRef]

Buhl, D.

L. E. Snyder and D. Buhl, “Detection of new stellar sources of vibrationally excited silicon monoxide maser emission at 6.95 millimeters,” Astrophys. J. 197, 329–340 (1975).
[CrossRef]

Burke, J. R.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Charo, A.

A. Charo and F. C. De Lucia, “The millimeter and submillimeter spectrum of CF2 and its production in a dc glow discharge,” J. Mol. Spectrosc. 94, 363–368 (1982).
[CrossRef]

Cheville, R. A.

Clark, W. W.

E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
[CrossRef]

Cofield, R. E.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Cohen, E. A.

H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
[CrossRef]

Conner, W. T.

H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
[CrossRef]

De Lucia, F. C.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
[CrossRef]

D. D. Skatrud and F. C. De Lucia, “Dynamics of the HCN discharge laser,” Appl. Phys. Lett. 46, 631–633 (1985).
[CrossRef]

D. D. Skatrud and F. C. De Lucia, “Excitation, inversion, and relaxation mechanisms of the HCN FIR discharge laser,” Appl. Phys. A 35, 179–193 (1984).
[CrossRef]

P. Helminger, J. K. Messer, and F. C. De Lucia, “Continuously tunable coherent spectroscopy for the 0.1- to 1.0-THz region,” Appl. Phys. Lett. 42, 309–310 (1983).
[CrossRef]

F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
[CrossRef]

A. Charo and F. C. De Lucia, “The millimeter and submillimeter spectrum of CF2 and its production in a dc glow discharge,” J. Mol. Spectrosc. 94, 363–368 (1982).
[CrossRef]

E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
[CrossRef]

F. C. De Lucia, “The study of laser processes by millimeter and submillimeter microwave spectroscopy,” Appl. Phys. Lett. 31, 606–608 (1977).
[CrossRef]

F. C. De Lucia and P. Helminger, “Millimeter spectroscopy of active laser plasmas: the excited vibrational states of HCN,” J. Chem. Phys. 67, 4262–4267 (1977).
[CrossRef]

P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37-mm wavelength,” Phys. Rev. Lett. 25, 1397–1399 (1970).
[CrossRef]

De Natale, P.

S. Viciani, F. Marin, and P. De Natale, “Noise characterization of a coherent tunable far infrared spectrometer,” Rev. Sci. Instrum. 69, 372–376 (1998).
[CrossRef]

Demers, J. R.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

Demuyuck, C.

C. Demuyuck, “Millimeter-wave spectroscopy in electric discharges. Rare molecules show themselves only if you look in the other direction,” J. Mol. Spectrosc. 168, 215 (1994).
[CrossRef]

Dixon, T. A.

R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
[CrossRef]

Dynamus, A.

F. C. van den Heuvel and A. Dynamus, “Observation of far-infrared transitions of HCO+, CO+, and NH2+,” Chem. Phys. Lett. 92, 219–222 (1982).
[CrossRef]

Everitt, H. O.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

Fattinger, C.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Ferrio, K. B.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

Filipiak, M. J.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Flower, D. A.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Froidevaux, L.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Gordy, W.

E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
[CrossRef]

P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37-mm wavelength,” Phys. Rev. Lett. 25, 1397–1399 (1970).
[CrossRef]

W. Gordy, “Microwave spectroscopy in the region of 4–0.4 millimeters,” J. Pure Appl. Chem. 2, 403–434 (1965).

W. C. King and W. Gordy, “One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O,” Phys. Rev. 93, 407–412 (1954).
[CrossRef]

Goyette, T. M.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

Grischkowsky, D. R.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
[CrossRef]

R. A. Cheville and D. R. Grischkowsky, “Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor,” J. Opt. Soc. Am. B 16, 317–322 (1999).
[CrossRef]

H. Harde, R. A. Cheville, and D. R. Grischkowsky, “THz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

R. A. Cheville and D. R. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648 (1995).
[CrossRef] [PubMed]

D. R. Grischkowsky, “An ultrafast optoelectronic THz beam system: applications to time-domain spectroscopy,” Opt. Photonics News 3, 21–28 (1992).
[CrossRef]

M. van Exter, C. Fattinger, and D. R. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[CrossRef]

Guenther, B. D.

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

Han, P. Y.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Harde, H.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
[CrossRef]

H. Harde, R. A. Cheville, and D. R. Grischkowsky, “THz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

Harwood, R. S.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Helminger, P.

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
[CrossRef]

P. Helminger, J. K. Messer, and F. C. De Lucia, “Continuously tunable coherent spectroscopy for the 0.1- to 1.0-THz region,” Appl. Phys. Lett. 42, 309–310 (1983).
[CrossRef]

F. C. De Lucia and P. Helminger, “Millimeter spectroscopy of active laser plasmas: the excited vibrational states of HCN,” J. Chem. Phys. 67, 4262–4267 (1977).
[CrossRef]

P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37-mm wavelength,” Phys. Rev. Lett. 25, 1397–1399 (1970).
[CrossRef]

Herbst, E.

E. Herbst, “Chemistry in the interstellar medium,” Annu. Rev. Phys. Chem. 46, 27–53 (1995).
[CrossRef]

J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
[CrossRef]

F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
[CrossRef]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Jarnot, R. F.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Kersting, R.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

King, W. C.

W. C. King and W. Gordy, “One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O,” Phys. Rev. 93, 407–412 (1954).
[CrossRef]

Klaus, T.

F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Kono, S.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Krupnov, A. F.

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

Lau, G. K.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Lay, R. R.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Lewen, F.

F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

Lewis, W. B.

W. B. Lewis, “Fluctuations in streams of thermal radiation,” Proc. Phys. Soc. 59, 34–40 (1947).
[CrossRef]

Liedtke, M.

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

Livesey, N. J.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Loo, M. S.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Lungu, T. A.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Maiwald, F.

F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Manney, G. L.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Manson Jr., E. L.

E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
[CrossRef]

Marin, F.

S. Viciani, F. Marin, and P. De Natale, “Noise characterization of a coherent tunable far infrared spectrometer,” Rev. Sci. Instrum. 69, 372–376 (1998).
[CrossRef]

Messer, J. K.

P. Helminger, J. K. Messer, and F. C. De Lucia, “Continuously tunable coherent spectroscopy for the 0.1- to 1.0-THz region,” Appl. Phys. Lett. 42, 309–310 (1983).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Nakamura, L. L.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Neelamani, R.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Papousek, D.

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

Pearson, J. C.

J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
[CrossRef]

Perum, V. S.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Petkie, D. T.

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

Petrmichl, R. H.

H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
[CrossRef]

Picket, H. M.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Pickett, H. M.

H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
[CrossRef]

Plummer, G. M.

F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
[CrossRef]

Pumphrey, H. C.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Putley, E. H.

E. H. Putley, “The ultimate sensitivity of sub-mm detectors,” Infrared Phys. 4, 1–8 (1964).
[CrossRef]

Read, W. G.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Ridenoure, B. P.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Saleck, A. H.

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

Santee, M. L.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Saykally, R. J.

R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
[CrossRef]

Schaefer, M. M.

H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
[CrossRef]

Schieder, R.

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[CrossRef]

Shippony, Z.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Shkaev, A. P.

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

Siegel, P. H.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Skatrud, D. D.

D. D. Skatrud and F. C. De Lucia, “Dynamics of the HCN discharge laser,” Appl. Phys. Lett. 46, 631–633 (1985).
[CrossRef]

D. D. Skatrud and F. C. De Lucia, “Excitation, inversion, and relaxation mechanisms of the HCN FIR discharge laser,” Appl. Phys. A 35, 179–193 (1984).
[CrossRef]

Snyder, L. E.

L. E. Snyder and D. Buhl, “Detection of new stellar sources of vibrationally excited silicon monoxide maser emission at 6.95 millimeters,” Astrophys. J. 197, 329–340 (1975).
[CrossRef]

Szanto, P. G.

R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
[CrossRef]

Tani, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Thurstans, R. P.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Tret’yakov, M. Y.

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

Tretyakov, M. Y.

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[CrossRef]

Urban, S.

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

Usami, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

van den Heuvel, F. C.

F. C. van den Heuvel and A. Dynamus, “Observation of far-infrared transitions of HCO+, CO+, and NH2+,” Chem. Phys. Lett. 92, 219–222 (1982).
[CrossRef]

van der Weide, D.

D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photonics News 14, 48–53 (2003).
[CrossRef]

van Exter, M.

Viciani, S.

S. Viciani, F. Marin, and P. De Natale, “Noise characterization of a coherent tunable far infrared spectrometer,” Rev. Sci. Instrum. 69, 372–376 (1998).
[CrossRef]

Volokhov, S. V.

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

Warner, H. E.

H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
[CrossRef]

Waters, J. W.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Winnewisser, G.

F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8, 241–253 (1995).
[CrossRef]

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

Wolff, M.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
[CrossRef]

Woods, R. C.

H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
[CrossRef]

R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
[CrossRef]

Wu, D. L.

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

Yamada, K.

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

Zhao, J.

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
[CrossRef]

Ziurys, L. M.

M. A. Anderson and L. M. Ziurys, “The millimeter/submillimeter spectrum and rotational rest frequencies of MgCH3 (X 2A1),” Astrophys. J. Lett. 452, L157 (1995).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

E. Herbst, “Chemistry in the interstellar medium,” Annu. Rev. Phys. Chem. 46, 27–53 (1995).
[CrossRef]

Appl. Phys. A (1)

D. D. Skatrud and F. C. De Lucia, “Excitation, inversion, and relaxation mechanisms of the HCN FIR discharge laser,” Appl. Phys. A 35, 179–193 (1984).
[CrossRef]

Appl. Phys. B (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

F. C. De Lucia, “The study of laser processes by millimeter and submillimeter microwave spectroscopy,” Appl. Phys. Lett. 31, 606–608 (1977).
[CrossRef]

D. D. Skatrud and F. C. De Lucia, “Dynamics of the HCN discharge laser,” Appl. Phys. Lett. 46, 631–633 (1985).
[CrossRef]

P. Helminger, J. K. Messer, and F. C. De Lucia, “Continuously tunable coherent spectroscopy for the 0.1- to 1.0-THz region,” Appl. Phys. Lett. 42, 309–310 (1983).
[CrossRef]

Astrophys. J. (1)

L. E. Snyder and D. Buhl, “Detection of new stellar sources of vibrationally excited silicon monoxide maser emission at 6.95 millimeters,” Astrophys. J. 197, 329–340 (1975).
[CrossRef]

Astrophys. J. Lett. (1)

M. A. Anderson and L. M. Ziurys, “The millimeter/submillimeter spectrum and rotational rest frequencies of MgCH3 (X 2A1),” Astrophys. J. Lett. 452, L157 (1995).
[CrossRef]

Astrophys. J., Suppl. Ser. (1)

J. C. Pearson, T. Anderson, E. Herbst, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectrum of highly excited states of water,” Astrophys. J., Suppl. Ser. 379, L41–L43 (1991).
[CrossRef]

Chem. Phys. Lett. (1)

F. C. van den Heuvel and A. Dynamus, “Observation of far-infrared transitions of HCO+, CO+, and NH2+,” Chem. Phys. Lett. 92, 219–222 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation THz sources driven by Ti: sapphire mode-locked lasers,” IEEE J. Quantum Electron. 37, 595–605 (2001).
[CrossRef]

Infrared Phys. (1)

E. H. Putley, “The ultimate sensitivity of sub-mm detectors,” Infrared Phys. 4, 1–8 (1964).
[CrossRef]

J. Appl. Phys. (1)

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001).
[CrossRef]

J. Atmos. Sci. (1)

J. W. Waters, W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Picket, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perum, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak, “The UARS and EOS microwave limb sounder experiments,” J. Atmos. Sci. 56, 194–218 (1999).
[CrossRef]

J. Chem. Phys. (3)

F. C. De Lucia, E. Herbst, G. M. Plummer, and G. A. Blake, “The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge,” J. Chem. Phys. 78, 2312–2316 (1983).
[CrossRef]

H. E. Warner, W. T. Conner, R. H. Petrmichl, and R. C. Woods, “Laboratory detection of the 110-111 submillimeter wave transition of the H2D+ ion,” J. Chem. Phys. 81, 2514 (1984).
[CrossRef]

F. C. De Lucia and P. Helminger, “Millimeter spectroscopy of active laser plasmas: the excited vibrational states of HCN,” J. Chem. Phys. 67, 4262–4267 (1977).
[CrossRef]

J. Mol. Spectrosc. (5)

H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” J. Mol. Spectrosc. 89, 542 (1981).
[CrossRef]

S. Urban, D. Papousek, S. P. Belov, A. F. Krupnov, M. Y. Tret’yakov, K. Yamada, and G. Winnewisser, “A simultaneous analysis of the microwave, submillimeter wave, and infrared transitions between the ground and ν2 inversion-rotation levels of 15NH3,” J. Mol. Spectrosc. 101, 16–29 (1983).
[CrossRef]

G. Winnewisser, A. F. Krupnov, M. Y. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, “Precision broadband spectroscopy in the terahertz region,” J. Mol. Spectrosc. 165, 294–300 (1994).
[CrossRef]

C. Demuyuck, “Millimeter-wave spectroscopy in electric discharges. Rare molecules show themselves only if you look in the other direction,” J. Mol. Spectrosc. 168, 215 (1994).
[CrossRef]

A. Charo and F. C. De Lucia, “The millimeter and submillimeter spectrum of CF2 and its production in a dc glow discharge,” J. Mol. Spectrosc. 94, 363–368 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (2)

H. Harde, R. A. Cheville, and D. R. Grischkowsky, “THz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001).
[CrossRef]

J. Phys. Chem. B (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[CrossRef]

J. Pure Appl. Chem. (1)

W. Gordy, “Microwave spectroscopy in the region of 4–0.4 millimeters,” J. Pure Appl. Chem. 2, 403–434 (1965).

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Lett. (3)

Opt. Photonics News (2)

D. R. Grischkowsky, “An ultrafast optoelectronic THz beam system: applications to time-domain spectroscopy,” Opt. Photonics News 3, 21–28 (1992).
[CrossRef]

D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photonics News 14, 48–53 (2003).
[CrossRef]

Phys. Rev. (1)

W. C. King and W. Gordy, “One-to-two millimeter wave spectroscopy. IV. Experimental methods and results for OCS, CH3F, and H2O,” Phys. Rev. 93, 407–412 (1954).
[CrossRef]

Phys. Rev. A (1)

E. L. Manson, Jr., W. W. Clark, F. C. De Lucia, and W. Gordy, “Millimeter spectrum and molecular constants of silicon monoxide,” Phys. Rev. A 15, 223–226 (1977).
[CrossRef]

Phys. Rev. Lett. (2)

R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
[CrossRef]

P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37-mm wavelength,” Phys. Rev. Lett. 25, 1397–1399 (1970).
[CrossRef]

Proc. Phys. Soc. (1)

W. B. Lewis, “Fluctuations in streams of thermal radiation,” Proc. Phys. Soc. 59, 34–40 (1947).
[CrossRef]

Rev. Sci. Instrum. (2)

D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997).
[CrossRef]

S. Viciani, F. Marin, and P. De Natale, “Noise characterization of a coherent tunable far infrared spectrometer,” Rev. Sci. Instrum. 69, 372–376 (1998).
[CrossRef]

Vib. Spectrosc. (1)

G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8, 241–253 (1995).
[CrossRef]

Z. Naturforsch. Teil A (1)

F. Lewen, S. P. Belov, F. Maiwald, T. Klaus, and G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Other (8)

J. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, Mass., 1960).

W. L. Wolfe and G. J. Zissis, The Infrared Handbook (U.S. Office of Naval Research, Washington, D.C., 1978).

A. F. Krupnov and A. V. Burenin, “New methods in submillimeter microwave spectroscopy,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1976), pp. 93–126.

W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd. ed. (Wiley, New York, 1984), Vol. 18, p. 929.

A. Carrington, Microwave Spectroscopy of Free Radicals (Academic, London, 1974).

F. C. De Lucia, “Spectroscopy in the terahertz spectral region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer, Berlin, 2003), pp. 39–154.

D. R. Grischkowsky, “Nonlinear generation of sub-psec pulses of THz electromagnetic radiation by optoelectronics—application to time-domain spectroscopy,” in Frontiers in Nonlinear Optics, H. Walther, N. Koroteev, and M. O. Scully, eds. (Institute of Physics, London, 1993).

G. W. Chantry, Submillimeter Spectroscopy (Academic, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram showing the flow of energy and noise through a SMM–THz spectrometer. The solid line in the center represents a single mode that couples the source to the detector. The dashed lines represent the multimode limits of the solid angle α observed by the detector.

Fig. 2
Fig. 2

Spectrum of nitric acid (HNO3) between 266 and 308 GHz (upper), 292 and 295 GHz (middle), and 293.3 and 293.7 GHz (lower). The spectrum shown in the upper trace required ∼1 s to record, whereas the segment shown in the lower trace required ∼0.01 s.

Fig. 3
Fig. 3

Top two horizontal lines represent source power levels of 1 mW and 1 µW. The lower two horizontal lines represent NEPs typical of  4He temperature detectors (the higher of the two) and  3He temperature detectors. The rest of the lines represent properties of a 300 K blackbody below some maximum frequency νmax.

Fig. 4
Fig. 4

Oscilloscope display (60-Hz sweep, ∼3 kHz of video bandwidth) of the J=12, ν=1 transition of SiO. This transition corresponds to that observed as a maser in the interstellar medium.

Fig. 5
Fig. 5

HCN discharge laser with a submillimeter probe for the study of the energy transfer and chemistry that leads to the population inversion and lasing.

Fig. 6
Fig. 6

Rotational absorption spectrum of the J=23 transitions of HCN in the 011, 001, 110, and 100 vibrational states with a laser current of 900 mA.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

fp12π Ne2me01/2.
ρ(ν)=8πhν3c3 1exp(hν/kT)-1dν,
E=hνexp(hν/kT)-1.
ρ(ν)=8πkTν2c3 dν,
E=kT,
nm=kThν.
Δnm2=nm(nm+1).
Δnrmsnm.
Δn2=NΔnm2.
N=8πν2c3Vdν.
V2¯=(hν)2Δn2=8π(kT)2ν2c3Vdν.
ΔEV2¯=8π(kT)2νmax33c3V.
ΔEA/Δt2¯=2(kT)2νmax33c2Aα cos θΔt.
PN=4(kT)2νmax3ABα cos θ3c21/2.
Pdν=8πkTν2dνc3 cA4 α2π cos θ.
P=2πkTνmax3A3c2 α2π cos θ.
PN=4(kT)5c2h3α cos θAB[J4(x1)-J4(x2)]1/2,
Jn(x)=0x xnex(ex-1)2 dx,
x=hνkT,
PN=3.64×10-13 W.
PN=3.70×10-13 W.
Aα cos θ(λ/2)2,
PNkT(Bνmax)1/2kTνmaxBνmax1/2.
PN4×10-15 W.
P=10×10-6 W.
PNkTB.
PN=4.1×10-9 W.
NJ=(4kTR0)1/2,
NEP=NJ/r.
NEP5×10-13 V/Hz1/2,

Metrics