Abstract

Large two-beam coupling gain with a low driving voltage and a small grating spacing was observed by use of a novel device structure in a photorefractive polymer with a low glass-transition temperature (Tg). A net gain (Γ-α)L close to 1 was observed for an external electric field of ∼40 V/µm and a grating spacing of 0.42 µm. The enhanced coupling strength was the result of optimized parameters and improved, effective electro-optical coefficient, phase shift, space-charge field, and effective interaction length compared with those of a conventional device structure. Moreover, mechanism for this enhancement of coupling strength was found to be applicable to typical efficient low-Tg polymeric materials.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Montemezzani and P. Gunter, “Inorganic and organic photorefractive materials,” in Notions and Perspectives of Nonlinear Optics, O. Keller, ed. (World Scientific, Singapore, 1996).
  2. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
    [CrossRef]
  3. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
    [CrossRef] [PubMed]
  4. For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996).
    [CrossRef]
  5. For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
    [CrossRef]
  6. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
    [CrossRef]
  7. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
    [CrossRef]
  8. M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
    [CrossRef]
  9. A. Grunnet-Jepson, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549–552 (1997).
    [CrossRef]
  10. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
    [CrossRef]
  11. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
    [CrossRef]
  12. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B 15, 905–913 (1998).
    [CrossRef]
  13. D. Fluck, S. Brulisauer, and P. Gunter, “Photorefractive two-wave mixing with focused Gaussian beams,” Opt. Commun. 115, 626–636 (1995).
    [CrossRef]
  14. H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000).
    [CrossRef]
  15. C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9, 1642–1647 (1992).
    [CrossRef]
  16. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
    [CrossRef]
  17. K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
    [CrossRef]
  18. D. Kokron, S. M. Evanko, and L. M. Hayden, “Launching of guided waves in a photorefractive polymer by two-beam coupling,” Opt. Lett. 20, 2297–2299 (1995).
    [CrossRef] [PubMed]
  19. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874–876 (1997).
    [CrossRef] [PubMed]

2000 (1)

H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000).
[CrossRef]

1999 (2)

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

1998 (5)

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B 15, 905–913 (1998).
[CrossRef]

1997 (3)

A. Grunnet-Jepson, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549–552 (1997).
[CrossRef]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874–876 (1997).
[CrossRef] [PubMed]

1996 (2)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
[CrossRef]

For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996).
[CrossRef]

1995 (2)

D. Fluck, S. Brulisauer, and P. Gunter, “Photorefractive two-wave mixing with focused Gaussian beams,” Opt. Commun. 115, 626–636 (1995).
[CrossRef]

D. Kokron, S. M. Evanko, and L. M. Hayden, “Launching of guided waves in a photorefractive polymer by two-beam coupling,” Opt. Lett. 20, 2297–2299 (1995).
[CrossRef] [PubMed]

1994 (2)

1992 (1)

Bittner, R.

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

Bjorklund, G. C.

Brulisauer, S.

D. Fluck, S. Brulisauer, and P. Gunter, “Photorefractive two-wave mixing with focused Gaussian beams,” Opt. Commun. 115, 626–636 (1995).
[CrossRef]

Casperson, J. D.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

DeClue, M.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Diaz-Garcia, M. A.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Enami, Y.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Erskine, L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Evanko, S. M.

Fluck, D.

D. Fluck, S. Brulisauer, and P. Gunter, “Photorefractive two-wave mixing with focused Gaussian beams,” Opt. Commun. 115, 626–636 (1995).
[CrossRef]

Glania, C.

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

Glazer, E.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Grunnet-Jepsen, A.

Grunnet-Jepson, A.

A. Grunnet-Jepson, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549–552 (1997).
[CrossRef]

Guillemet, G.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Gunter, P.

D. Fluck, S. Brulisauer, and P. Gunter, “Photorefractive two-wave mixing with focused Gaussian beams,” Opt. Commun. 115, 626–636 (1995).
[CrossRef]

Hache, F.

Hayden, L. M.

Hendrickx, E.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Hwang, J.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000).
[CrossRef]

Javidi, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
[CrossRef]

Kim, N.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000).
[CrossRef]

Kippelen, B.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
[CrossRef]

Kokron, D.

Kramer, P.

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

Lukaszuk, K.

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

Maldonado, J. L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Marder, S. R.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Matschiner, R.

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

Meerholz, K.

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
[CrossRef]

Moerner, W. E.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B 15, 905–913 (1998).
[CrossRef]

A. Grunnet-Jepson, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549–552 (1997).
[CrossRef]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874–876 (1997).
[CrossRef] [PubMed]

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9, 1642–1647 (1992).
[CrossRef]

Moon, H.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000).
[CrossRef]

Nardin, Y. D.

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

Park, S. Y.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000).
[CrossRef]

Peyghambarian, N.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
[CrossRef]

Rockel, H.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Sandophon,

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Sasabe, H.

For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996).
[CrossRef]

Silence, S. M.

Smith, B.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Steele, D. D.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Thompson, C. L.

Twieg, R. J.

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

Volodin, B. L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
[CrossRef]

Wada, T.

For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996).
[CrossRef]

Walsh, C. A.

Wang, J. F.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Wang, L.

For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996).
[CrossRef]

Wortmann, R.

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

Wright, D.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Yao, Y. J.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

You, F.

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

Zhang, Y.

For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

For example, L. Wang, Y. Zhang, T. Wada, and H. Sasabe, “Photorefractive effect in a photoconductive electro-optic carbazole trimer,” Appl. Phys. Lett. 69, 728–730 (1996).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composite,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Chem. Mater. (1)

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, and W. E. Moerner, “Photorefractive properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Chem. Phys. (1)

For example, R. Wortmann, C. Glania, P. Kramer, K. Lukaszuk, R. Matschiner, R. J. Twieg, and F. You, “Highlytransparent and birefringent chromophores for organic photorefractive materials,” Chem. Phys. 245, 107–120 (1999).
[CrossRef]

Chem. Rev. (1)

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

J. Opt. Soc. Am. B (4)

Macromolecules (1)

H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing Indole-based multifunctional chromophores as a pendant group,” Macromolecules 33, 5116–5123(2000).
[CrossRef]

Nature (1)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58–60 (1996).
[CrossRef]

Opt. Commun. (2)

D. Fluck, S. Brulisauer, and P. Gunter, “Photorefractive two-wave mixing with focused Gaussian beams,” Opt. Commun. 115, 626–636 (1995).
[CrossRef]

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150, 205–209 (1998).
[CrossRef]

Opt. Lett. (2)

Science (2)

A. Grunnet-Jepson, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549–552 (1997).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandophon, Y. J. Yao, J. F. Wang, H. Rockel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–56 (1998).
[CrossRef] [PubMed]

Other (1)

G. Montemezzani and P. Gunter, “Inorganic and organic photorefractive materials,” in Notions and Perspectives of Nonlinear Optics, O. Keller, ed. (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spatial arrangement of writing beams and a PR grating formed in a sandwich cell structure. The directions of an external electric field (E) and of a grating vector (K) are also shown. Two angles shown, θcross and θtilt, are defined inside a PR medium.

Fig. 2
Fig. 2

Schematic illustrations of (a) a conventional device with the transmission beam arrangement, (b) a conventional structure with the reflection arrangement, and (c) a new device structure and beam arrangement. Shaded regions, PR media; a stripes, PR gratings.

Fig. 3
Fig. 3

Results of measurements of (a) time evolutional changes in writing beams in the new structure at an external electric field of 35 V/µm and the electric-field dependences of (b) ΓL parameters and (c) Γ values. Filled circles, open circles, and crosses represent data from the new structure, the conventional structure with the reflection beam arrangement, and the conventional structure with the transmission arrangement, respectively. (b) Theoretical curves, details of which are in the text; inset, electric-field dependence of the single-beam transmission measured in the conventional structure with the transmission arrangement, which is explained in the text. (c) Dashed line, absorption coefficient of the material used in this study.

Fig. 4
Fig. 4

Dependence phase shift on electric field. Filled circles, open circles, and crosses represent measured data from the new structure, the conventional structure with the reflection beam arrangement, and the conventional structure with the transmission arrangement, respectively. Details of the theoretical curves are given in the text.

Fig. 5
Fig. 5

Strength of space-charge field ESC. Filled circles, open circles, and crosses represent the new structure, the conventional structure with the reflection beam arrangement, and the conventional structure with the transmission arrangement, respectively.

Fig. 6
Fig. 6

Calculated values of (Γ-α)L in an extended electric-field value through 200 V/µm for the new structure and the conventional structure with the transmission arrangement. Dotted curve, conventional structure; other curves are for the new structure, for which the solid curve corresponds to Λ=0.42 µm, the long-dashed curve to Λ=0.82 µm, and the dotted–dashed curve to Λ=1.22 µm. Filled circles, measured data for the new structure.

Tables (1)

Tables Icon

Table 1 Parameters for the Structures Described in this Paper

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

reffcos θtilt cos(π-2θcross)×[(C/A-1)+(C/A+1)cos(π-2θcross)],
ΓL=CΓLRESC sin ϕL,
ϕ=tan-1 ED(ED+Eq)+(Ea)2EaEq,
ESC=mEq [{EaEq}2+{ED(ED+Eq)+(Ea)2}2]1/2(ED+Eq)2+(Ea)2,

Metrics