Abstract

We performed high-resolution spectroscopy of Sm i in the near-UV transitions by using an extended-cavity violet diode laser. By adopting traditional Doppler-free saturated-absorption spectroscopy, we made accurate measurements of the isotope shifts for Sm i. For an atomic excitation laser we used an extended-cavity violet diode laser that was operated in the wavelength range 398–400 nm. As for the experimental results, Doppler-free spectra of the 399.002- and 399.102-nm transition lines of Sm were obtained and the isotope shifts between the even-mass isotopes were measured for the first time to our knowledge. Additionally, we used the King-plot method to check the consistency of the measured isotope shifts and to analyze them as mass shifts and field shifts. For a more quantitative analysis, we performed an ab initio calculation by using the relativistic multiconfiguration Dirac–Fock method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription