Abstract

We address the generation of fully inseparable three-mode entangled states of radiation by interlinked nonlinear interactions in χ(2) media. We show how three-mode entanglement can be used to realize symmetric and asymmetric telecloning machines, which achieve optimal fidelity for coherent states. An experimental implementation involving a single nonlinear crystal in which the two interactions take place simultaneously is suggested. Preliminary experimental results showing the feasibility and the effectiveness of the interaction scheme with a seeded crystal are also presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
    [CrossRef] [PubMed]
  2. W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
    [CrossRef]
  3. T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
    [CrossRef]
  4. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
    [CrossRef]
  5. M. Ban, “Quantum dense coding of continuous variables in a noisy quantum channel,” J. Opt. B: Quantum Semiclassical Opt. 2, 786–789 (2000).
    [CrossRef]
  6. T. C. Ralph and E. H. Huntington, “Unconditional continuous-variable dense coding,” Phys. Rev. A 66, 042321 (2002).
    [CrossRef]
  7. Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
    [CrossRef] [PubMed]
  8. Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002).
    [CrossRef] [PubMed]
  9. M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett. 85, 3789–3792 (2000).
    [CrossRef] [PubMed]
  10. B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
    [CrossRef]
  11. G. M. D’Ariano, M. G. A. Paris, and P. Perinotti, “Improving quantum interferometry using entanglement,” Phys. Rev. A 65, 062106 (2002).
    [CrossRef]
  12. M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum-state engineering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).
    [CrossRef]
  13. G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).
    [CrossRef] [PubMed]
  14. G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404 (2001).
    [CrossRef]
  15. J. Zhang, C. Xie, and K. Peng, “Controlled dense coding forcontinuous variables using three-particle entangled states,” Phys. Rev. A 66, 032318 (2002).
    [CrossRef]
  16. J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
    [CrossRef] [PubMed]
  17. T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
    [CrossRef] [PubMed]
  18. P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003).
    [CrossRef]
  19. M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
    [CrossRef]
  20. P. van Loock and S. Braunstein, “Telecloning of continuous quantum variables,” Phys. Rev. Lett. 87, 247901 (2001).
    [CrossRef] [PubMed]
  21. G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Improved discrimination of unitary transformation by entangled probes,” J. Opt. B: Quantum Semiclassical Opt. 4, S273 (2002).
    [CrossRef]
  22. G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001).
    [CrossRef]
  23. P. van Loock and S. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000).
    [CrossRef] [PubMed]
  24. O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
    [CrossRef]
  25. M. Bondani, A. Allevi, E. Puddu, A. Andreoni, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004).
    [CrossRef] [PubMed]
  26. R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
    [CrossRef]
  27. M. E. Smithers and E. Y. C. Lu, “Quantum theory of coupled parametric down-conversion and up-conversion with simultaneous phase matching,” Phys. Rev. A 10, 1874–1880 (1974).
    [CrossRef]
  28. N. Piovella, M. Cola, and R. Bonifacio, “Quantum fluctuations and entanglement in the collective atomic recoil laser using a Bose–Einstein condensate,” Phys. Rev. A 67, 013817 (2003).
    [CrossRef]
  29. S. L. Braunstein, V. Buzek, and M. Hillery, “Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit,” Phys. Rev. A 63, 052313 (2001).
    [CrossRef]
  30. N. J. Cerf, “Asymmetric quantum cloning in any dimension,” J. Mod. Opt. 47, 187–209 (2000).
    [CrossRef]
  31. N. J. Cerf, A. Ipe, and X. Rottenberg, “Cloning of continuous quantum variables,” Phys. Rev. Lett. 85, 1754–1757 (2000).
    [CrossRef] [PubMed]
  32. S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
    [CrossRef] [PubMed]
  33. J. Fiurasek, “Optical implementation of continuous-variable quantum cloning machines,” Phys. Rev. Lett. 86, 4942–4945 (2001).
    [CrossRef] [PubMed]
  34. N. J. Cerf, S. Iblisdir, and G. van Assche, “Cloning and cryptography with quantum continuous variables,” Eur. Phys. J. D 18, 211–218 (2002).
    [CrossRef]

2004 (1)

2003 (8)

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

N. Piovella, M. Cola, and R. Bonifacio, “Quantum fluctuations and entanglement in the collective atomic recoil laser using a Bose–Einstein condensate,” Phys. Rev. A 67, 013817 (2003).
[CrossRef]

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum-state engineering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).
[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003).
[CrossRef]

2002 (8)

G. M. D’Ariano, M. G. A. Paris, and P. Perinotti, “Improving quantum interferometry using entanglement,” Phys. Rev. A 65, 062106 (2002).
[CrossRef]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

T. C. Ralph and E. H. Huntington, “Unconditional continuous-variable dense coding,” Phys. Rev. A 66, 042321 (2002).
[CrossRef]

Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
[CrossRef] [PubMed]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002).
[CrossRef] [PubMed]

N. J. Cerf, S. Iblisdir, and G. van Assche, “Cloning and cryptography with quantum continuous variables,” Eur. Phys. J. D 18, 211–218 (2002).
[CrossRef]

J. Zhang, C. Xie, and K. Peng, “Controlled dense coding forcontinuous variables using three-particle entangled states,” Phys. Rev. A 66, 032318 (2002).
[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Improved discrimination of unitary transformation by entangled probes,” J. Opt. B: Quantum Semiclassical Opt. 4, S273 (2002).
[CrossRef]

2001 (7)

G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001).
[CrossRef]

P. van Loock and S. Braunstein, “Telecloning of continuous quantum variables,” Phys. Rev. Lett. 87, 247901 (2001).
[CrossRef] [PubMed]

S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
[CrossRef] [PubMed]

J. Fiurasek, “Optical implementation of continuous-variable quantum cloning machines,” Phys. Rev. Lett. 86, 4942–4945 (2001).
[CrossRef] [PubMed]

S. L. Braunstein, V. Buzek, and M. Hillery, “Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit,” Phys. Rev. A 63, 052313 (2001).
[CrossRef]

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).
[CrossRef] [PubMed]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404 (2001).
[CrossRef]

2000 (5)

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett. 85, 3789–3792 (2000).
[CrossRef] [PubMed]

M. Ban, “Quantum dense coding of continuous variables in a noisy quantum channel,” J. Opt. B: Quantum Semiclassical Opt. 2, 786–789 (2000).
[CrossRef]

N. J. Cerf, “Asymmetric quantum cloning in any dimension,” J. Mod. Opt. 47, 187–209 (2000).
[CrossRef]

N. J. Cerf, A. Ipe, and X. Rottenberg, “Cloning of continuous quantum variables,” Phys. Rev. Lett. 85, 1754–1757 (2000).
[CrossRef] [PubMed]

P. van Loock and S. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
[CrossRef]

1998 (2)

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[CrossRef]

1974 (1)

M. E. Smithers and E. Y. C. Lu, “Quantum theory of coupled parametric down-conversion and up-conversion with simultaneous phase matching,” Phys. Rev. A 10, 1874–1880 (1974).
[CrossRef]

1970 (1)

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Allevi, A.

Andreoni, A.

Andrews, R. A.

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Aoki, T.

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

Bachor, H. A.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

Ban, M.

M. Ban, “Quantum dense coding of continuous variables in a noisy quantum channel,” J. Opt. B: Quantum Semiclassical Opt. 2, 786–789 (2000).
[CrossRef]

Bondani, M.

Bonifacio, R.

N. Piovella, M. Cola, and R. Bonifacio, “Quantum fluctuations and entanglement in the collective atomic recoil laser using a Bose–Einstein condensate,” Phys. Rev. A 67, 013817 (2003).
[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum-state engineering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).
[CrossRef]

Bowen, W. P.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

Braunstein, S.

P. van Loock and S. Braunstein, “Telecloning of continuous quantum variables,” Phys. Rev. Lett. 87, 247901 (2001).
[CrossRef] [PubMed]

P. van Loock and S. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000).
[CrossRef] [PubMed]

Braunstein, S. L.

S. L. Braunstein, V. Buzek, and M. Hillery, “Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit,” Phys. Rev. A 63, 052313 (2001).
[CrossRef]

S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
[CrossRef] [PubMed]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Brownnutt, M.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Buchler, B. C.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

Buzek, V.

S. L. Braunstein, V. Buzek, and M. Hillery, “Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit,” Phys. Rev. A 63, 052313 (2001).
[CrossRef]

Cerf, N. J.

N. J. Cerf, S. Iblisdir, and G. van Assche, “Cloning and cryptography with quantum continuous variables,” Eur. Phys. J. D 18, 211–218 (2002).
[CrossRef]

S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
[CrossRef] [PubMed]

N. J. Cerf, “Asymmetric quantum cloning in any dimension,” J. Mod. Opt. 47, 187–209 (2000).
[CrossRef]

N. J. Cerf, A. Ipe, and X. Rottenberg, “Cloning of continuous quantum variables,” Phys. Rev. Lett. 85, 1754–1757 (2000).
[CrossRef] [PubMed]

Chon, C. W.

T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Cirac, J. I.

G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001).
[CrossRef]

Cola, M.

N. Piovella, M. Cola, and R. Bonifacio, “Quantum fluctuations and entanglement in the collective atomic recoil laser using a Bose–Einstein condensate,” Phys. Rev. A 67, 013817 (2003).
[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum-state engineering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).
[CrossRef]

D’Ariano, G. M.

G. M. D’Ariano, M. G. A. Paris, and P. Perinotti, “Improving quantum interferometry using entanglement,” Phys. Rev. A 65, 062106 (2002).
[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Improved discrimination of unitary transformation by entangled probes,” J. Opt. B: Quantum Semiclassical Opt. 4, S273 (2002).
[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404 (2001).
[CrossRef]

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).
[CrossRef] [PubMed]

Fabre, C.

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett. 85, 3789–3792 (2000).
[CrossRef] [PubMed]

Fei, H.-B.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[CrossRef]

Ferraro, A.

Fiurasek, J.

J. Fiurasek, “Optical implementation of continuous-variable quantum cloning machines,” Phys. Rev. Lett. 86, 4942–4945 (2001).
[CrossRef] [PubMed]

Fuchs, C. A.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Furusawa, A.

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003).
[CrossRef]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Giedke, G.

G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001).
[CrossRef]

Glöckl, O.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Goh, K. W.

T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Heersink, J.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Hillery, M.

S. L. Braunstein, V. Buzek, and M. Hillery, “Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit,” Phys. Rev. A 63, 052313 (2001).
[CrossRef]

Hiraoka, T.

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

Huntington, E. H.

T. C. Ralph and E. H. Huntington, “Unconditional continuous-variable dense coding,” Phys. Rev. A 66, 042321 (2002).
[CrossRef]

Iblisdir, S.

N. J. Cerf, S. Iblisdir, and G. van Assche, “Cloning and cryptography with quantum continuous variables,” Eur. Phys. J. D 18, 211–218 (2002).
[CrossRef]

S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
[CrossRef] [PubMed]

Ipe, A.

N. J. Cerf, A. Ipe, and X. Rottenberg, “Cloning of continuous quantum variables,” Phys. Rev. Lett. 85, 1754–1757 (2000).
[CrossRef] [PubMed]

Jing, J.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

Jonathan, D.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
[CrossRef]

Jost, B. M.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[CrossRef]

Kimble, H. J.

T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
[CrossRef]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Kolobov, M. I.

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett. 85, 3789–3792 (2000).
[CrossRef] [PubMed]

Korolkova, N.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002).
[CrossRef] [PubMed]

Kraus, B.

G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001).
[CrossRef]

Lau, P. K.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

Leuchs, G.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
[CrossRef] [PubMed]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002).
[CrossRef] [PubMed]

Lewenstein, M.

G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001).
[CrossRef]

Li, X.

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

Lo Presti, P.

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Improved discrimination of unitary transformation by entangled probes,” J. Opt. B: Quantum Semiclassical Opt. 4, S273 (2002).
[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404 (2001).
[CrossRef]

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).
[CrossRef] [PubMed]

Lodahl, P.

T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Lorenz, S.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Lu, E. Y. C.

M. E. Smithers and E. Y. C. Lu, “Quantum theory of coupled parametric down-conversion and up-conversion with simultaneous phase matching,” Phys. Rev. A 10, 1874–1880 (1974).
[CrossRef]

Lütkenhaus, N.

Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
[CrossRef] [PubMed]

Marquardt, C.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Massar, S.

S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
[CrossRef] [PubMed]

Murao, M.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
[CrossRef]

Pan, Q.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

Paris, M. G. A.

M. Bondani, A. Allevi, E. Puddu, A. Andreoni, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004).
[CrossRef] [PubMed]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum-state engineering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).
[CrossRef]

G. M. D’Ariano, M. G. A. Paris, and P. Perinotti, “Improving quantum interferometry using entanglement,” Phys. Rev. A 65, 062106 (2002).
[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Improved discrimination of unitary transformation by entangled probes,” J. Opt. B: Quantum Semiclassical Opt. 4, S273 (2002).
[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404 (2001).
[CrossRef]

Peng, K.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

J. Zhang, C. Xie, and K. Peng, “Controlled dense coding forcontinuous variables using three-particle entangled states,” Phys. Rev. A 66, 032318 (2002).
[CrossRef]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

Perinotti, P.

G. M. D’Ariano, M. G. A. Paris, and P. Perinotti, “Improving quantum interferometry using entanglement,” Phys. Rev. A 65, 062106 (2002).
[CrossRef]

Piovella, N.

N. Piovella, M. Cola, and R. Bonifacio, “Quantum fluctuations and entanglement in the collective atomic recoil laser using a Bose–Einstein condensate,” Phys. Rev. A 67, 013817 (2003).
[CrossRef]

Plenio, M. B.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
[CrossRef]

Polzik, E. S.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Puddu, E.

Rabin, H.

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Ralph, T. C.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
[CrossRef] [PubMed]

T. C. Ralph and E. H. Huntington, “Unconditional continuous-variable dense coding,” Phys. Rev. A 66, 042321 (2002).
[CrossRef]

Rottenberg, X.

N. J. Cerf, A. Ipe, and X. Rottenberg, “Cloning of continuous quantum variables,” Phys. Rev. Lett. 85, 1754–1757 (2000).
[CrossRef] [PubMed]

Saleh, B. E. A.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[CrossRef]

Schnabel, R.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

Silberhorn, C.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

Silberhorn, Ch.

Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
[CrossRef] [PubMed]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002).
[CrossRef] [PubMed]

Smithers, M. E.

M. E. Smithers and E. Y. C. Lu, “Quantum theory of coupled parametric down-conversion and up-conversion with simultaneous phase matching,” Phys. Rev. A 10, 1874–1880 (1974).
[CrossRef]

Sørensen, J. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Symul, T.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

Takey, N.

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

Tang, C. L.

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[CrossRef]

Treps, N.

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

van Assche, G.

N. J. Cerf, S. Iblisdir, and G. van Assche, “Cloning and cryptography with quantum continuous variables,” Eur. Phys. J. D 18, 211–218 (2002).
[CrossRef]

van Loock, P.

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003).
[CrossRef]

P. van Loock and S. Braunstein, “Telecloning of continuous quantum variables,” Phys. Rev. Lett. 87, 247901 (2001).
[CrossRef] [PubMed]

S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
[CrossRef] [PubMed]

P. van Loock and S. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000).
[CrossRef] [PubMed]

Vedral, V.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
[CrossRef]

Wakui, K.

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

Xie, C.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

J. Zhang, C. Xie, and K. Peng, “Controlled dense coding forcontinuous variables using three-particle entangled states,” Phys. Rev. A 66, 032318 (2002).
[CrossRef]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

Yan, Y.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

Yonezawa, H.

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

Zhang, J.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

J. Zhang, C. Xie, and K. Peng, “Controlled dense coding forcontinuous variables using three-particle entangled states,” Phys. Rev. A 66, 032318 (2002).
[CrossRef]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

Zhang, T. C.

T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
[CrossRef]

Zhao, F.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

N. J. Cerf, S. Iblisdir, and G. van Assche, “Cloning and cryptography with quantum continuous variables,” Eur. Phys. J. D 18, 211–218 (2002).
[CrossRef]

J. Mod. Opt. (1)

N. J. Cerf, “Asymmetric quantum cloning in any dimension,” J. Mod. Opt. 47, 187–209 (2000).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (2)

M. Ban, “Quantum dense coding of continuous variables in a noisy quantum channel,” J. Opt. B: Quantum Semiclassical Opt. 2, 786–789 (2000).
[CrossRef]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Improved discrimination of unitary transformation by entangled probes,” J. Opt. B: Quantum Semiclassical Opt. 4, S273 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (13)

O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003).
[CrossRef]

M. E. Smithers and E. Y. C. Lu, “Quantum theory of coupled parametric down-conversion and up-conversion with simultaneous phase matching,” Phys. Rev. A 10, 1874–1880 (1974).
[CrossRef]

N. Piovella, M. Cola, and R. Bonifacio, “Quantum fluctuations and entanglement in the collective atomic recoil laser using a Bose–Einstein condensate,” Phys. Rev. A 67, 013817 (2003).
[CrossRef]

S. L. Braunstein, V. Buzek, and M. Hillery, “Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit,” Phys. Rev. A 63, 052313 (2001).
[CrossRef]

G. Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac, “Separability properties of three-mode Gaussian states,” Phys. Rev. A 64, 052303 (2001).
[CrossRef]

P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003).
[CrossRef]

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
[CrossRef]

W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul, and P. K. Lau, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003).
[CrossRef]

T. C. Zhang, K. W. Goh, C. W. Chon, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003).
[CrossRef]

J. Zhang, C. Xie, and K. Peng, “Controlled dense coding forcontinuous variables using three-particle entangled states,” Phys. Rev. A 66, 032318 (2002).
[CrossRef]

T. C. Ralph and E. H. Huntington, “Unconditional continuous-variable dense coding,” Phys. Rev. A 66, 042321 (2002).
[CrossRef]

G. M. D’Ariano, M. G. A. Paris, and P. Perinotti, “Improving quantum interferometry using entanglement,” Phys. Rev. A 65, 062106 (2002).
[CrossRef]

M. G. A. Paris, M. Cola, and R. Bonifacio, “Quantum-state engineering assisted by entanglement,” Phys. Rev. A 67, 042104 (2003).
[CrossRef]

Phys. Rev. Lett. (15)

G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).
[CrossRef] [PubMed]

G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, “Using entanglement improves the precision of quantum measurements,” Phys. Rev. Lett. 87, 270404 (2001).
[CrossRef]

Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
[CrossRef] [PubMed]

Ch. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett. 88, 167902 (2002).
[CrossRef] [PubMed]

M. I. Kolobov and C. Fabre, “Quantum limits on optical resolution,” Phys. Rev. Lett. 85, 3789–3792 (2000).
[CrossRef] [PubMed]

B. E. A. Saleh, B. M. Jost, H.-B. Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett. 80, 3483–3486 (1998).
[CrossRef]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

T. Aoki, N. Takey, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003).
[CrossRef] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef]

P. van Loock and S. Braunstein, “Telecloning of continuous quantum variables,” Phys. Rev. Lett. 87, 247901 (2001).
[CrossRef] [PubMed]

P. van Loock and S. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000).
[CrossRef] [PubMed]

R. A. Andrews, H. Rabin, and C. L. Tang, “Coupled parametric downconversion and upconversion with simultaneous phase matching,” Phys. Rev. Lett. 25, 605–608 (1970).
[CrossRef]

N. J. Cerf, A. Ipe, and X. Rottenberg, “Cloning of continuous quantum variables,” Phys. Rev. Lett. 85, 1754–1757 (2000).
[CrossRef] [PubMed]

S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, “Optimal cloning of coherent states with a linear amplifier and beam splitters,” Phys. Rev. Lett. 86, 4938–4941 (2001).
[CrossRef] [PubMed]

J. Fiurasek, “Optical implementation of continuous-variable quantum cloning machines,” Phys. Rev. Lett. 86, 4942–4945 (2001).
[CrossRef] [PubMed]

Science (1)

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the telecloning scheme. After the preparation of the state |T0 by bilinear interactions in a nonlinear crystal (NLC), a conditional measurement is made on mode a1, which corresponds to the joint measurement of the sum and difference quadratures on two modes: mode a1 and another reference mode b, which is excited in a coherent state σ, to be teleported and cloned (LO denotes the local oscillator). The result of the measurement is classically sent to the parties who want to prepare approximate clones, where suitable displacement operations (see text) are performed.

Fig. 2
Fig. 2

Fidelity of symmetric clones versus the average (equal) photon number N of modes a2 and a3.

Fig. 3
Fig. 3

Interaction scheme. The pump beams a4 and a5 are assumed to impinge on the crystal face along the normal. The values of the crystal cut angle ϑ and of the interaction angles ϑ1, ϑ2, and ϑ3 are calculated to satisfy the phase-matching conditions. The wavelengths of the interacting modes are λ(ω1)=λ(ω3)=1064 nm, λ(ω4)=λ(ω5)=532 nm, and λ(ω2)=355 nm.

Fig. 4
Fig. 4

Experimental setup. The fundamental and second-harmonic outputs of the Nd:YAG laser are sent to a harmonic separator, and then each beam is collimated to a diameter suitable to illuminate the BBO crystal. The polarization of the second-harmonic beam emerging from the laser is elliptic, and the two polarization components are separated by a thin-film plate polarizer (P1). On the ordinarily polarized component, a λ/2 plate is inserted to modulate the intensity of beam a5, without affecting the intensity of the other pump, a4. The two beams then recombine at a second thin-film plate polarizer (P2) and are sent to the BBO. D5 and D2 are pyroelectric detectors.

Fig. 5
Fig. 5

Comparison of the experimental results with the field evolution calculated according to Eq. (33). Open circles, measured values of the energy of field a2 as a function of the measured values of the energy of pump field a5; filled circles, values of the energy of field a2 as calculated from the classical evolution of the interacting fields as a function of the measured values of the energy of pump field a5.

Equations (75)

Equations on this page are rendered with MathJax. Learn more.

Hint=γ1a1a3+γ2a2a3+H.c.
Δ(t)N1(t)-N2(t)-N3(t)Δ(0),
a1(t)=f1a1(0)+f2a2(0)+f3a3(0),
a2(t)=g1a1(0)+g2a2(0)+g3a3(0),
a3(t)=h1a1(0)+h2a2(0)+h3a3(0).
N1=N2+N3,
N2=|γ1|2|γ2|2Ω4(cos Ωt-1)2,
N3=|γ1|2Ω2 sin2(Ωt).
|T0=Ut|0=11+N1 pqN21+N1p/2N31+N1q/2×(p+q)!p!q!1/2|p+q, p, q,
χ(λ1, λ2, λ3)=Tr[|T0T0|D1(λ1)D2(λ2)D3(λ3)]=0|UtD1(λ1)D2(λ2)D3(λ3)Ut|0=exp[-12(|λ1|2+|λ2|2+|λ3|2)],
λ1=f1λ1-g1λ2¯-h1λ3¯,
λ2=-f2λ1¯+g2λ2+h2¯λ3,
λ3=-f3λ1¯+g3¯λ2+h3λ3.
χ(λ1, λ2, λ3)=exp-14 xTCx,
J=0-II0,
(β)=1πD(β)σTD(β),
P(β)=Tr123[|T0T0|(β)I2I3]=1π(1+N1) pq N2pN3q(1+N1)p+q (p+q)!p!q!×p+q|D(β)σTD(β)|p+q.
ϱβ=1P(β) Tr1[|T0T0|(β)I2I3]=1P(β) 1π(1+N1) pqkl N2(p+k)/2N3(q+l)/2(1+N1)(p+q+k+l)/2 ×(p+q)!(k+l)!p!q!k!l!1/2×k+l|D(β)σTD(β)|p+q|p, qk, l|.
ϱ23=d2βP(β)τβ,
Pz(β)=1π(1+N1) exp-|β+z¯|21+N1.
|ψβ=|δ2β2|δ3β3,
δ2β=(z+β¯)κ2,δ3β=(z+β¯)κ3,
κj=Nj1+N11/2.
Uβ|ψβ=|zκ2+β¯(κ2-1)|zκ3+β¯(κ3-1).
ϱj=d2βPz(β)|zκj+β¯(κj-1)zκj+β¯(κj-1)|.
cos Ωt=|γ1|22|γ2|2-|γ1|2,
N=4|γ1|2|γ2|2(2|γ2|2-|γ1|2)2.
F=z|ϱj|z= d2βπ(2N+1) exp-|z+β¯|22N+1×exp[-|z+β¯|2(κ-1)2]=12+3N-2[N(2N+1)]1/2.
F2=12+N3+2N2-2[N2(N2+N3+1)]1/2,
F3=12+N2+2N3-2[N3(N2+N3+1)]1/2.
F2=4 (1-F3)(4-3F3),
|Tα=D1[αf1(-t)]D2[-αf2(-t)¯]D3[-αf3(-t)¯]|T0,
|ψβ=|ζ2β2|ζ3β3,
ζ2β=(z+β¯-αf1¯)κ2-αf2¯,
ζ3β=(z+β¯-αf1¯)κ3-αf3¯,
Uβ=D2(β¯-κ2αf1¯-αf2¯)D3(β¯-κ3αf1¯-αf3¯).
0=I1I2n(1-η)n|n33n|.
P0=Tr123[|T0T0|0]=11+N1 m,nN21+N1nN3(1-η)1+N1m (n+m)!n!m!=(1+ηN3)-1,
ϱ0=1+ηN31+N1 m,n,nN21+N1(n+n)/2×N3(1-η)1+N1m 1m! (n+m)!(n+m)!n!n!1/2×|n+m, nn+m, n|.
|ψ0=1+N31+N11/2nN21+N1n/2|n, n.
ζ12=(n1-n2)2-(n1-n2)2n1+n2
ζ12=N3(1-η)(1+N3)(1+ηN3)[2N2+N3(1-η)],
F(η, ξ)=ξ|ϱ0|ξ=(1-ξ2) 1+ηN31+N1×m,n,n,p,qξp+qN21+N1(n+n)/2×N3(1-η)1+N1m 1m! (n+m)!(n+m)!n!n!1/2×δnpδnqδ0m=1+ηN31+N1 1-ξ2{1-ξ[N2/(1+N1)]1/2}2.
F(η)=1+ηN31+N3.
E2=ω2ω1 c1E4c2E5(c2E5-c1E4)2×{cos[(c2E5-c1E4)1/2z]-1}2E1,
a˙1=iγ¯1a3,
a˙2=-iγ2a3,
a˙3=-iγ1a1-iγ¯2a2.
a1(0)+μa˜1(μ)=iγ¯1a˜3(μ),
a2(0)+μa˜2(μ)=-iγ2a˜3(μ),
a3(0)+μa˜3(μ)=-iγ1a˜1(μ)-iγ¯2a˜2(μ),
a˜j(μ)0dt exp(-μt)aj(t).
Δ=μ(μ+Γ)(μ-Γ),
a˜1(μ)=1Δ[(|γ2|2+μ2)a1(0)+γ¯1γ¯2a2(0)+iγ¯1μa3(0)],
a˜2(μ)=1Δ[-γ1γ2a1(0)+(μ2-|γ1|2)a2(0)-iγ2μa3(0)],
a˜3(μ)=1Δ[-iγ1μa1(0)-iμγ¯2a2(0)+μ2a3(0)].
a1(t)=f1a1(0)+f2a2(0)+f3a3(0),
a2(t)=g1a1(0)+g2a2(0)+g3a3(0),
a3(t)=h1a1(0)+h2a2(0)+h3a3(0),
f1(t)=1Ω2(|γ1|2 cos Ωt-|γ2|2),
f2(t)=γ¯1γ¯2Ω2(cos Ωt-1),
f3(t)=i γ¯1Ω sin(Ωt),
g1(t)=γ1γ2Ω2(1-cos Ωt),
g2(t)=1Ω2(|γ1|2-|γ2|2 cos Ωt),
g3(t)=-i γ2Ω sin(Ωt),
h1(t)=-i γ1Ω sin(Ωt),
h2(t)=-i γ2¯Ω sin(Ωt),
h3(t)=cos(Ωt),
Hint=γ1K+γ2¯J+H.c.,
J1a1a1+a3a3,J2a3a3-a2a2,
Ma1a2,
Uˆ(t)=exp(β1K)exp(β2M)exp(β3J)exp(β4J1)×exp(β5J2)exp(β6J)exp(β7K)exp(β8M),
Uˆ(t)|α, 0, 0=Uˆ(t)exp-|α|22n αnn!|n, 0, 0=exp-|α|22exp(β1K)exp(β2M)×exp(β3J)exp(β4J1)n αnn!|n, 0, 0=exp-|α|22exp(β1K)exp(β2M)×exp(β3J)exp(β4)×n [α exp(β4)]nn!|n, 0, 0=exp-|α|22exp(β4)exp(β1K)×n,p [α exp(β4)]nn! β2pp! [(n+p)!]1/2n!×|n+p, p, 0=exp-|α|22exp(β4)n,p,qβ1qβ2p×[α exp(β4)]n [(n+p+q)!]1/2n!p!q!×|n+p+q, p, q.
exp(β4)=1(1+N1)1/2,β1=N31+N11/2, β2=N21+N11/2.
N1=N1α-|α|21+|α|2,N2=N2α1+|α|2, N3=N3α1+|α|2.

Metrics