Abstract

A complete quantitative description of a nonlinear fiber array for optical limiting application against laser pulses in the picosecond–nanosecond regime is presented. We discuss the dynamics of the molecular photonic processes accompanying the propagation of a laser pulse through the fiber core made of materials that possess reverse saturable absorption, two-photon absorption (TPA), and excited-state absorption (ESA), and we detail the optical limiting effectiveness and limitations of these nonlinear absorption processes individually and in concert. In particular, we demonstrate the importance of excited-state population recycling in extending the dynamic range of the limiting action. Experimental results obtained from a particular fiber core material that possesses TPA and ESA show good agreement with theoretical expectations and demonstrate the optical limiting capability of such a nonlinear fiber array.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ANSI Standard Z136.1 for the Safe Use of Lasers (American National Standards Institute, Inc., New York, 2000).
  2. L. W. Tutt and T. F. Boggess, “Review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  3. C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
    [CrossRef]
  4. M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
    [CrossRef]
  5. R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, D. G. McLean, and T. Pottenger, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993).
    [CrossRef]
  6. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett. 19, 625–627 (1994).
    [CrossRef] [PubMed]
  7. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997).
    [CrossRef] [PubMed]
  8. P. A. Miles, “Bottleneck optical limiters—the optimal use of excited-state absorbers,” Appl. Opt. 33, 6965–6979 (1994).
    [CrossRef] [PubMed]
  9. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
    [CrossRef] [PubMed]
  10. J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
    [CrossRef]
  11. I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999).
    [CrossRef]
  12. I. C. Khoo, “Liquid crystal array for optical limiting of laser pulses and for eye/sensor protection,” U.S. Patent 5, 589, 101 (December 31, 1996).
  13. I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, and P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998).
    [CrossRef]
  14. I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
    [CrossRef]
  15. I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
    [CrossRef]
  16. G. P. Agarwal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  17. See, for example, K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  18. J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
    [CrossRef]
  19. D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993), and references therein.
    [CrossRef]
  20. R. C. Hoffman, K. A. Stetyick, R. S. Potember, and D. G. McLean, “Reverse saturable absorbers—indanthrone and its derivatives,” J. Opt. Soc. Am. B 6, 772–777 (1989).
    [CrossRef]
  21. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
    [CrossRef]
  22. T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983).
    [CrossRef]
  23. P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
    [CrossRef]
  24. G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
    [CrossRef]
  25. C. Martineau, R. Anemian, C. Andraud, Y. Morel, O. Stephan, I. Wang, M. Bouriau, and P. L. Baldeck, “Two-photon absorption induced applications in the visible range: optical limiting and polymerization,” in the Proceedings of the 2002 Fourth International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2002).
  26. L. Hong, H. Zhen-Li, and W. He-Zhou, “Two-photon absorption properties and applications of organic materials,” Wuli, 32, 19–26 (2003).
  27. G. L. Wood, M. J. Miller, and A. G. Mott, “Investigation of tetrabenzporphyrin by the Z-scan technique,” Opt. Lett. 20, 973–975 (1995).
    [CrossRef] [PubMed]
  28. M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
    [CrossRef]

2003 (2)

G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
[CrossRef]

L. Hong, H. Zhen-Li, and W. He-Zhou, “Two-photon absorption properties and applications of organic materials,” Wuli, 32, 19–26 (2003).

2002 (1)

I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
[CrossRef]

2001 (1)

I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

1999 (2)

C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
[CrossRef]

I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999).
[CrossRef]

1998 (2)

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, and P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998).
[CrossRef]

1997 (3)

1995 (3)

1994 (2)

1993 (3)

1992 (1)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
[CrossRef]

1990 (1)

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
[CrossRef]

1989 (1)

1988 (1)

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
[CrossRef]

1983 (1)

T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983).
[CrossRef]

Alvarez, D.

Barroso, J.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Bhatt, J. C.

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “Review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Boilot, J. P.

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

Brandelik, D. M.

Brant, M. C.

Brun, A.

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

Brunel, M.

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

Campagne, B.

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

Canva, M.

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

Chaput, F.

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

Chen, K.

I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
[CrossRef]

Chen, P. H.

I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, and P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998).
[CrossRef]

Cho, C.-C.

G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
[CrossRef]

Choong, I.

Costela, A.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Coulter, D. R.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
[CrossRef]

Diaz, A.

I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
[CrossRef]

I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

Dillard, A. G.

Ding, J.

I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
[CrossRef]

Dogariu, A.

Ehrlich, J. E.

Firey, P. A.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
[CrossRef]

Fleitz, P. A.

Ford, W. E.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
[CrossRef]

Garcia-Moreno, I.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Guenther, B. D.

Hagan, D. J.

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997).
[CrossRef] [PubMed]

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
[CrossRef]

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
[CrossRef]

He, G. S.

G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

He-Zhou, W.

L. Hong, H. Zhen-Li, and W. He-Zhou, “Two-photon absorption properties and applications of organic materials,” Wuli, 32, 19–26 (2003).

Hoffman, R. C.

Hong, L.

L. Hong, H. Zhen-Li, and W. He-Zhou, “Two-photon absorption properties and applications of organic materials,” Wuli, 32, 19–26 (2003).

Hu, Z. Y.

Kato, S.

T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983).
[CrossRef]

Kenney, M. E.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
[CrossRef]

Khoo, I. C.

I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
[CrossRef]

I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, and P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

Lee, I. Y. S.

Lin, T.-C.

G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
[CrossRef]

Mansour, K.

Marder, S. R.

McLean, D. G.

Miles, P. A.

Miller, M. J.

Mott, A. G.

Nashold, K. M.

Ohno, T.

T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983).
[CrossRef]

Perry, J. W.

Perry, K. J.

Potember, R. S.

Pottenger, T.

Prasad, P. N.

G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

Reinhardt, B. A.

Rockel, H.

Rodgers, M. A. J.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
[CrossRef]

Said, A. A.

T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997).
[CrossRef] [PubMed]

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
[CrossRef]

Saiz, J. L.

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Sence, M. J.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
[CrossRef]

Sheikbahae, M.

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
[CrossRef]

Shih, M.-Y.

I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, and P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998).
[CrossRef]

Sounik, J. R.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
[CrossRef]

Spangler, C. W.

C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
[CrossRef]

Stetyick, K. A.

Sutherland, R. L.

Tanno, T.

T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983).
[CrossRef]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “Review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Van Stryland, E. W.

Vanstryland, E. W.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
[CrossRef]

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
[CrossRef]

Vinogradov, S. A.

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

Walter, D. P.

Wei, T. H.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
[CrossRef]

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
[CrossRef]

Wood, G. L.

Wood, M. V.

I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999).
[CrossRef]

I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, and P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998).
[CrossRef]

Wu, X. L.

Xia, T.

Xu, G. C.

Yamada, A.

T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983).
[CrossRef]

Yu, L.-J.

G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
[CrossRef]

Zhang, Y.

I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
[CrossRef]

Zhen-Li, H.

L. Hong, H. Zhen-Li, and W. He-Zhou, “Two-photon absorption properties and applications of organic materials,” Wuli, 32, 19–26 (2003).

Appl. Opt. (2)

Appl. Phys. B (1)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Vanstryland, J. W. Perry, and D. R. Coulter, “Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines,” Appl. Phys. B 54, 46–51 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, “Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase,” Appl. Phys. Lett. 82, 4717–4719 (2003).
[CrossRef]

Chem. Phys. (2)

M. Brunel, F. Chaput, S. A. Vinogradov, B. Campagne, M. Canva, J. P. Boilot, and A. Brun, “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys. 218, 301–307 (1997).
[CrossRef]

I. C. Khoo, P. H. Chen, M. V. Wood, and M.-Y. Shih, “Molecular photonics of a highly nonlinear organic fiber core liquid for picosecond-nanosecond optical limiting application,” Chem. Phys. 245, 517–531 (1999).
[CrossRef]

IEEE J. Quantum Electron (1)

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26, 760–769 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I.-C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen—a reversible energy-transfer reaction,” J. Am. Chem. Soc. 110, 7626–7630 (1988).
[CrossRef]

J. Mater. Chem. (1)

C. W. Spangler, “Recent development in the design of organic materials for optical power limiting,” J. Mater. Chem. 9, 2013–2020 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (1)

T. Ohno, S. Kato, A. Yamada, and T. Tanno, “Electron transfer reactions of the photoexcited triplet state of Chloroaluminum phthalocyanine with aromatic amines, benzoquinones, and coordination of compounds of iron (II) and iron (III),” J. Phys. Chem. 87, 775–781 (1983).
[CrossRef]

J. Phys. Chem. A (1)

J. Barroso, A. Costela, I. Garcia-Moreno, and J. L. Saiz, “Wavelength dependence of the nonlinear absorption of C-60- and C-70-toluene solutions,” J. Phys. Chem. A 102, 2527–2532 (1998).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

I. C. Khoo, J. Ding, A. Diaz, Y. Zhang, and K. Chen, “Recent studies of optical limiting, image processing and near-infrared nonlinear optics with nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 375, 33–44 (2002).
[CrossRef]

Opt. Lett. (6)

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “Review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Wuli (1)

L. Hong, H. Zhen-Li, and W. He-Zhou, “Two-photon absorption properties and applications of organic materials,” Wuli, 32, 19–26 (2003).

Other (4)

ANSI Standard Z136.1 for the Safe Use of Lasers (American National Standards Institute, Inc., New York, 2000).

I. C. Khoo, “Liquid crystal array for optical limiting of laser pulses and for eye/sensor protection,” U.S. Patent 5, 589, 101 (December 31, 1996).

G. P. Agarwal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

C. Martineau, R. Anemian, C. Andraud, Y. Morel, O. Stephan, I. Wang, M. Bouriau, and P. L. Baldeck, “Two-photon absorption induced applications in the visible range: optical limiting and polymerization,” in the Proceedings of the 2002 Fourth International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the nonlinear optical limiting mechanisms in a fiber array (not drawn to scale). There is usually a thin (∼0.2–0.5-mm) layer of liquid between the fiber array and the front window in some of the actual constructed devices.

Fig. 2
Fig. 2

Energy-level diagram of a RSA molecule with singlet (S) and triplet (T) states.

Fig. 3
Fig. 3

Optical limiting curves for a C60-filled fiber array (i.e., a material that exhibits RSA with population recycling in the excited singlet and triplet states), a (singlet-state-only) RSA model (corresponding to only the singlet states in Fig. 2), and a RSA model in which there is no repopulation of S1 from S2. The fiber length is 3 mm, the diameter is 25 µm. The parameters used are wavelength λ=532 nm; cross sections σ0=3.2×10-18 cm2, σ1=1.6×10-17 cm2, σT=1.4×10-17 cm2; relaxation times τ0=32.5 ns, τn and τTn1 ps; and intersystem rising times τST=1.35 ns and τT=40 ms. (a) Low-input laser energy regime, (b) high-input laser energy regime.

Fig. 4
Fig. 4

Energy-level diagram for the nonlinear organic fiber core liquid L34.

Fig. 5
Fig. 5

Limiting curve for the L34 liquid-cored 3-mm fiber array configuration (wavelength λ=532 nm, pulse width τp=7 ns) for (a) low and (b) high intensities. The parameters used are ground-state absorption α=0.136 cm-1, ESA αexc=1.7×104 cm-1, and TPA coefficient β=4.11 cm/GW.

Fig. 6
Fig. 6

Temporal propagation of a 120-µJ pulse through a 3-mm fiber array for (a) a pure two-photon model, (b) TPA plus ESA (no transition N3 to N5 allowed), (c) the complete model of Fig. 3 with τ2=0.1 ns and τ3=1 ps. Pulse length (FWHM) is 7 ns.

Fig. 7
Fig. 7

Molecular structure and linear (one-photon) absorption spectrum of L34.

Fig. 8
Fig. 8

Effective TPA coefficient βeff of the liquid L34 measured with nanosecond laser pulses.

Fig. 9
Fig. 9

Optical limiting curve of a 100 µm-thick L34 cell with nanosecond laser pulses (focused laser spot diameter on film is ω0=6 µm; pulse duration is 7 ns, film thickness is 100 µm).

Fig. 10
Fig. 10

Experimental setup for optical limiting measurement.

Fig. 11
Fig. 11

Theoretical simulation and experimental picosecond pulse limiting result with 5-mm-long L34 cored fiber and C60-doped isotropic liquid crystal (ILC).14 Fiber core diameter (same as laser focused spot diameter) is 20 µm, pulse width is 66 ps, and λ=0.53 µm.

Fig. 12
Fig. 12

Experimental and theoretical optical limiting curves for nanosecond laser-pulse propagation through a 3-mm L34 cored fiber array. Fiber core diameter (same as laser focused spot diameter) is 20 µm, pulse width is 20 ns, and λ=0.53 µm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S0t=-σ0IhνS0+S1τ0+T1τT,
S1t=σ0IhνS0-S1τ0-S1kST+S2τn-σ1IhνS1,
S2t=-S2τn+σ1IhνS1,
T1t=S1kST-T1τT-σTIhνT1+T2τTn,
T2t=σTIhνT1-T2τTn.
dIdz=-(σ0S0+σ1S1+σTSt)I.
N1t=-βI22hνN0A+αgIhνN0AN1+αgIhνN0AN4,
N2t=βI22hνN0AN1-1τ2N2,
N3t=αexcIhνN0A(N5-N3)-1τ3N3,
N4t=αgIhνN0A(N1-N4),
N5t=1τ2N2+αexcIhνN0A(N3-N5)+1τ3N3,
dIdz=-α N1-N4N0AI+β N1N0AI2+αexc N5-N3N0AI.

Metrics