Abstract

A model is presented that includes broadband, off-axis light generation for parametric downconversion processes. We apply this to parametric generation with material parameters adapted for periodically poled lithium niobate; our simulations are compared with experimental results. Our simulations explore the competition between on-axis and off-axis signal generation. With a broad-area pump, we find that a shorter crystal is more effective at suppressing off-axis signal generation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
    [CrossRef]
  2. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
    [CrossRef]
  3. A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16, 609–619 (1999).
    [CrossRef]
  4. A. Fix and R. Wallenstein, “Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis,” J. Opt. Soc. Am. B 13, 2484–2497 (1996).
    [CrossRef]
  5. M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators,” Opt. Lett. 25, 248–250 (2000).
    [CrossRef]
  6. G. Hansson and D. D. Smith, “Optical parametric generation in 2-μm-wavelength-pumped periodically poled LiNbO3,” Opt. Lett. 25, 1783–1785 (2000).
    [CrossRef]
  7. S. Haidar, T. Usami, J. Shikata, and H. Ito, “Seed-source tuning of a broadband noncollinear optical parametric generator based on periodic poled LiNbO3,” Opt. Eng. 42, 143–147 (2003).
    [CrossRef]
  8. T. A. Reichardt, R. P. Bambha, T. J. Kulp, and R. L. Schmitt, “Frequency-locked, injection-seeded, pulsed narrowband optical parametric generator,” Appl. Opt. 42, 3564–3569 (2003).
    [CrossRef] [PubMed]
  9. J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
    [CrossRef] [PubMed]
  10. P. E. Powers, K. W. Aniolek, T. J. Kulp, B. R. Richman, and S. E. Bisson, “Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator,” Opt. Lett. 23, 1886–1889 (1998).
    [CrossRef]
  11. S. Wu, V. Kapinus, and G. A. Blake, “A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser,” Opt. Commun. 159, 74–79 (1999).
    [CrossRef]
  12. R. Urshel, U. Bader, A. Borsutzky, and R. Wallenstein, “Spectral properties and conversion efficiency of 355-nm-pumped pulsed optical parametric oscillators of β-barium borate with noncollinear phase matching,” J. Opt. Soc. Am. B 16, 565–579 (1999).
    [CrossRef]
  13. W. J. Alford, R. J. Gehr, R. L. Schmitt, A. V. Smith, and G. Arisholm, “Beam tilt and angular dispersion in broad-bandwidth, nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1525–1532 (1999).
    [CrossRef]
  14. S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, “Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures,” IEEE J. Quantum Electron. 37, 877–887 (2001).
    [CrossRef]
  15. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [CrossRef] [PubMed]
  16. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–438 (1979).
    [CrossRef]
  17. R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
    [CrossRef]
  18. B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
    [CrossRef]
  19. M. A. Dreger and J. K. Mclver, “Second-harmonic generation in a nonlinear, anisotropic medium with diffraction and depletion,” J. Opt. Soc. Am. B 7, 776–784 (1990).
    [CrossRef]
  20. G. J. Edwards and M. Lawrence, “A temperature-dependent equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  21. S. M. Russell, “Novel quasi-phase-matched devices in periodically poled lithium niobate,” Ph.D. dissertation (University of Dayton, Dayton, Ohio, 2001).

2003

S. Haidar, T. Usami, J. Shikata, and H. Ito, “Seed-source tuning of a broadband noncollinear optical parametric generator based on periodic poled LiNbO3,” Opt. Eng. 42, 143–147 (2003).
[CrossRef]

T. A. Reichardt, R. P. Bambha, T. J. Kulp, and R. L. Schmitt, “Frequency-locked, injection-seeded, pulsed narrowband optical parametric generator,” Appl. Opt. 42, 3564–3569 (2003).
[CrossRef] [PubMed]

2001

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, “Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures,” IEEE J. Quantum Electron. 37, 877–887 (2001).
[CrossRef]

2000

1999

1998

1997

1996

1995

1990

1984

G. J. Edwards and M. Lawrence, “A temperature-dependent equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

1979

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–438 (1979).
[CrossRef]

1973

B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
[CrossRef]

1968

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Alford, W. J.

Aniolek, K. W.

Arisholm, G.

Bader, U.

Bambha, R. P.

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–438 (1979).
[CrossRef]

Bisson, S. E.

Blake, G. A.

S. Wu, V. Kapinus, and G. A. Blake, “A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser,” Opt. Commun. 159, 74–79 (1999).
[CrossRef]

Borsutzky, A.

Bosenberg, W. R.

Bowers, M. S.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–438 (1979).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Dominic, V.

Dreger, M. A.

Eckardt, R. C.

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Fejer, M. M.

Fix, A.

Gehr, R. J.

Haidar, S.

S. Haidar, T. Usami, J. Shikata, and H. Ito, “Seed-source tuning of a broadband noncollinear optical parametric generator based on periodic poled LiNbO3,” Opt. Eng. 42, 143–147 (2003).
[CrossRef]

Hansson, G.

Harris, S. E.

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Ito, H.

S. Haidar, T. Usami, J. Shikata, and H. Ito, “Seed-source tuning of a broadband noncollinear optical parametric generator based on periodic poled LiNbO3,” Opt. Eng. 42, 143–147 (2003).
[CrossRef]

Kapinus, V.

S. Wu, V. Kapinus, and G. A. Blake, “A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser,” Opt. Commun. 159, 74–79 (1999).
[CrossRef]

Kulp, T. J.

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Mclver, J. K.

Missey, M. J.

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, “Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures,” IEEE J. Quantum Electron. 37, 877–887 (2001).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators,” Opt. Lett. 25, 248–250 (2000).
[CrossRef]

Mollow, B. R.

B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
[CrossRef]

Myers, L. E.

Powers, P. E.

Raymond, T. D.

Reichardt, T. A.

Richman, B. R.

Russell, S. M.

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, “Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures,” IEEE J. Quantum Electron. 37, 877–887 (2001).
[CrossRef]

Schepler, K. L.

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, “Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures,” IEEE J. Quantum Electron. 37, 877–887 (2001).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators,” Opt. Lett. 25, 248–250 (2000).
[CrossRef]

Schmitt, R. L.

Shikata, J.

S. Haidar, T. Usami, J. Shikata, and H. Ito, “Seed-source tuning of a broadband noncollinear optical parametric generator based on periodic poled LiNbO3,” Opt. Eng. 42, 143–147 (2003).
[CrossRef]

Smith, A. V.

Smith, D. D.

Urshel, R.

Usami, T.

S. Haidar, T. Usami, J. Shikata, and H. Ito, “Seed-source tuning of a broadband noncollinear optical parametric generator based on periodic poled LiNbO3,” Opt. Eng. 42, 143–147 (2003).
[CrossRef]

Wallenstein, R.

Wu, S.

S. Wu, V. Kapinus, and G. A. Blake, “A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser,” Opt. Commun. 159, 74–79 (1999).
[CrossRef]

Zayhowski, J. J.

Appl. Opt.

IEEE J. Quantum Electron.

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, “Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures,” IEEE J. Quantum Electron. 37, 877–887 (2001).
[CrossRef]

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–438 (1979).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. Wu, V. Kapinus, and G. A. Blake, “A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser,” Opt. Commun. 159, 74–79 (1999).
[CrossRef]

Opt. Eng.

S. Haidar, T. Usami, J. Shikata, and H. Ito, “Seed-source tuning of a broadband noncollinear optical parametric generator based on periodic poled LiNbO3,” Opt. Eng. 42, 143–147 (2003).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

G. J. Edwards and M. Lawrence, “A temperature-dependent equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev.

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Phys. Rev. A

B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
[CrossRef]

Other

S. M. Russell, “Novel quasi-phase-matched devices in periodically poled lithium niobate,” Ph.D. dissertation (University of Dayton, Dayton, Ohio, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Noncollinear phase-match diagram. (b) Noncollinear phase-match angles versus signal wavelength for a 1.064-µm pump wave and 29.75-µm grating period.

Fig. 2
Fig. 2

Gain of a nondepleted pump OPG as a function of signal wavelength under different pump intensities (watts per square meter) in PPLN.

Fig. 3
Fig. 3

Output signal power as a function of input pump power. The crystal is 2.5-cm long. The spectra describe the same input signal with the following transverse pump conditions: (a) wide pump size and (b) narrow pump size.

Fig. 4
Fig. 4

Calculated and experimental output signal spectra in the far field for the wide-area pump. The OPG are pumped at two times the threshold. The crystal length is 2.5 cm. (a) Simulation results and (b) experimental results. The absorption notch in (b) is due to first-order QPM second-harmonic generation at that wavelength.

Fig. 5
Fig. 5

Calculated and experimental output signal spectra in the far field for the narrow-area pump. The OPGs are pumped at two times the threshold. The crystal length is 2.5 cm. (a) Simulation results and (b) experimental results.

Fig. 6
Fig. 6

Crystal length is an important issue in the OPG process. The pump beam is broad. (a) Signal power versus crystal length under different input pump intensities (watts per square meter) and (b) pump power threshold versus crystal length.

Fig. 7
Fig. 7

Crystal length is 2.5 cm. Spectra of the seeded output for various pump levels when the seed power is 30 mW. (a) Calculated spectra of the seeded output and (b) measured spectra of the seeded output.

Fig. 8
Fig. 8

Crystal length is 2.5 cm. The seed power is 30 mW. (a) Output signal power of the seeded mode versus pump intensity and (b) pump depletion versus pump intensity.

Fig. 9
Fig. 9

Crystal length is 2.5 cm. Spectra of the seeded output for various seed levels when the pump level is fixed. (a) Calculated spectra of the seeded output. The dotted, solid, and dotted–dashed curves denote the signal spectra at seed intensities of 103, 104, and 105 W/m2. (b) Measured spectra of the seeded output. The dotted, solid, and dotted–dashed curves denote the signal spectra at seed powers of 6.31, 11.04, and 20.51 mW.

Fig. 10
Fig. 10

Seed power is 30 mW. (a) Spectra of the seeded output signal for a 2-cm long crystal. The dotted, solid, and dotted–dashed curves denote the signal spectra at pump powers of 6.8, 5.3, and 4.5 MW. (b) Spectra of the seeded output signal for a 5-cm long crystal. The dotted, solid, and dotted–dashed curves denote the signal spectra at pump powers of 2.3, 1.4, and 1.0 MW.  

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ωp=ωs+ωi.
Δk=kp-ks-ki-Kg.
E˜sn(ωsn, x, z)z-i2ksn2E˜sn(ωsn, x, z)
=i ωsnχ(2)2nsncE˜p(ωp, x, z)E˜in*(ωin, x, z)×exp(iΔknz),
E˜in(ωin, x, z)z-i2kin2E˜in(ωin, x, z)
=i ωinχ(2)2nincE˜p(ωp, x, z)E˜sn*(ωsn, x, z)×exp(iΔknz),
E˜p(ωp, x, z)z-i2kp2E˜p(ωp, x, z)
=i ωpχ(2)2npc E˜sn(ωsn, x, z)E˜in(ωin, x, z)×exp(-iΔkinz),

Metrics