Abstract

The Nd3+Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear laser crystal has been investigated as a function of both donor (Nd3+) and acceptor (Yb3+) concentrations. An analytical expression giving the value of the energy-transfer rate for any Nd3+ and Yb3+ concentrations has been obtained on the basis of the analysis of experimental data. From this expression, a basic model is proposed to determine the Nd3+ and Yb3+ concentrations that optimize the Yb3+ output laser power obtained from a 808-nm diode-pumped Nd3+; Yb3+:YAl3(BO3)4 crystal.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4 lasers,” Opt. Lett. 25, 731–733 (2000).
    [CrossRef]
  2. E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
    [CrossRef]
  3. F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, “Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal,” J. Opt. Soc. Am. B 16, 164–172 (1999).
    [CrossRef]
  4. E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
    [CrossRef]
  5. P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser,” Opt. Commun. 207, 315–320 (2002).
    [CrossRef]
  6. C. Hönninger, F. Morier-Genoud, M. Moser, U. Séller, L. R. Brovelli, and C. Harder, “Efficient and tunable diode-pumped femtosecond Yb:glass lasers,” Opt. Lett. 23, 126–128 (1998).
    [CrossRef]
  7. P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, and B. S. Lu, “Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal,” J. Opt. Soc. Am. B 16, 63–69 (1999).
    [CrossRef]
  8. D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–357 (1999).
    [CrossRef]
  9. D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
    [CrossRef]
  10. D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 90, 1070–1072 (2001).
    [CrossRef]
  11. M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
    [CrossRef]
  12. D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
    [CrossRef]
  13. D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
    [CrossRef]
  14. M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
    [CrossRef]
  15. Z. D. Luo, “Determination of opyimum neodymium concentration the NYAB self-frequency doubling laser,” Prog. Nat. Sci. 4, 504–507 (1994).
  16. A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
    [CrossRef]
  17. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
    [CrossRef]
  18. W. P. Risk, “Modeling of longitudinally pumped solid-state laser exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
    [CrossRef]
  19. D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
    [CrossRef]
  20. D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
    [CrossRef]
  21. D. Jaque, J. Capmany, L. Zundu, and J. García Solé, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys. Condens. Matter 9, 9715–9729 (1997).
    [CrossRef]
  22. Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [CrossRef]
  23. S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
    [CrossRef]

2003

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

2002

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser,” Opt. Commun. 207, 315–320 (2002).
[CrossRef]

2001

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
[CrossRef]

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

2000

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4 lasers,” Opt. Lett. 25, 731–733 (2000).
[CrossRef]

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

1999

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, “Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal,” J. Opt. Soc. Am. B 16, 164–172 (1999).
[CrossRef]

P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, and B. S. Lu, “Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal,” J. Opt. Soc. Am. B 16, 63–69 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–357 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

1998

D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

C. Hönninger, F. Morier-Genoud, M. Moser, U. Séller, L. R. Brovelli, and C. Harder, “Efficient and tunable diode-pumped femtosecond Yb:glass lasers,” Opt. Lett. 23, 126–128 (1998).
[CrossRef]

1997

D. Jaque, J. Capmany, L. Zundu, and J. García Solé, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys. Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

1994

Z. D. Luo, “Determination of opyimum neodymium concentration the NYAB self-frequency doubling laser,” Prog. Nat. Sci. 4, 504–507 (1994).

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

1988

W. P. Risk, “Modeling of longitudinally pumped solid-state laser exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
[CrossRef]

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

1971

M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

Aka, G.

Bartl, M. H.

M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
[CrossRef]

Batalioto, F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Bausá, L. E.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

Bell, M. J. V.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Bettinelli, M.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
[CrossRef]

Boulon, G.

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

Braud, A.

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

Brenier, A.

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

Brovelli, L. R.

Burns, P. A.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser,” Opt. Commun. 207, 315–320 (2002).
[CrossRef]

Caird, Y. A.

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Capmany, J.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–357 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, L. Zundu, and J. García Solé, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys. Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Cavalli, E.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
[CrossRef]

Chase, L. L.

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Dardenne, K.

Dawes, J. M.

de Sousa, D. F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Dekker, P.

DeLoach, L. D.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

Diening, A.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

Doualan, J. L.

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

García Solé, J.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–357 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, L. Zundu, and J. García Solé, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys. Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Gatterer, K.

M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
[CrossRef]

Girad, S.

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

Harder, C.

Hönninger, C.

Huber, G.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

Jackson, S. D.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

Jaque, D.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–357 (1999).
[CrossRef]

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, L. Zundu, and J. García Solé, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys. Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Kahn-Harari, A.

Kellner, T.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

King, T. A.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

Knowles, D. S.

Krupke, W. F.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Kway, W. L.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

Li, J.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser,” Opt. Commun. 207, 315–320 (2002).
[CrossRef]

Liu, Y.

Lu, B. S.

Luo, Z. D.

D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
[CrossRef]

Z. D. Luo, “Determination of opyimum neodymium concentration the NYAB self-frequency doubling laser,” Prog. Nat. Sci. 4, 504–507 (1994).

Molero, F.

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
[CrossRef]

Moncorgé, R.

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

Montoya, E.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Mougel, F.

Nunes, L. A.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Oliveira, S. L.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Payne, S. A.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Piper, J. A.

Pollnau, M.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

Ramirez, M. O.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

Ramponi, A. Y.

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Risk, W. P.

Romero, J. J.

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

Sanz García, J. A.

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

Sanz-García, J. A.

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

Séller, U.

Smith, L. K.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

Speghini, A.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
[CrossRef]

Staver, P. R.

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

Thuau, M.

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

Tkachuk, A. M.

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

Tossano, J. B.

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

Vivien, D.

Wang, J.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser,” Opt. Commun. 207, 315–320 (2002).
[CrossRef]

P. Wang, P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, “Efficient continuous-wave self-frequency-doubling green diode-pumped Yb:YAl3(BO3)4 lasers,” Opt. Lett. 25, 731–733 (2000).
[CrossRef]

Wang, P.

Weber, M. J.

M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

Zundu, L.

D. Jaque, J. Capmany, L. Zundu, and J. García Solé, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys. Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Appl. Phys. Lett.

E. Montoya, J. Capmany, L. E. Bausá, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–357 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. García Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

IEEE J. Quantum Electron.

Y. A. Caird, S. A. Payne, P. R. Staver, A. Y. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F2−Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[CrossRef]

S. A. Payne, L. K. Smith, L. D. DeLoach, W. L. Kway, J. B. Tossano, and W. F. Krupke, “Laser, optical and thermomechanical properties of Yb-doped fluorapatite,” IEEE J. Quantum Electron. 30, 170–179 (1994).
[CrossRef]

J. Appl. Phys.

D. Jaque and J. J. Romero, “Continuous wave ultraviolet laser source based on self-frequency-sum-mixing in Nd3+:YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 90, 1070–1072 (2001).
[CrossRef]

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausá, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
[CrossRef]

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

D. Jaque, J. Capmany, L. Zundu, and J. García Solé, “Optical bands and energy levels of Nd3+ ion in the YAl3(BO3)4 nonlinear laser crystal,” J. Phys. Condens. Matter 9, 9715–9729 (1997).
[CrossRef]

Opt. Commun.

P. A. Burns, J. M. Dawes, P. Dekker, J. A. Piper, J. Li, and J. Wang, “Coupled-cavity, single-frequency, yellow microchip tunable cw Yb:YAB laser,” Opt. Commun. 207, 315–320 (2002).
[CrossRef]

Opt. Lett.

Opt. Mater.

D. Jaque, J. Capmany, J. A. Sanz García, A. Brenier, G. Boulon, and J. García Solé, “Nd3+ ion-based self-frequency doubling solid-state lasers,” Opt. Mater. 13, 147–157 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, Z. D. Luo, and J. García Solé, “Up-conversion luminescence in the Nd3+:YAB self-frequency doubling laser crystal,” Opt. Mater. 10, 211–217 (1998).
[CrossRef]

Phys. Rev. B

A. Braud, S. Girad, J. L. Doualan, M. Thuau, R. Moncorgé, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[CrossRef]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

Prog. Nat. Sci.

Z. D. Luo, “Determination of opyimum neodymium concentration the NYAB self-frequency doubling laser,” Prog. Nat. Sci. 4, 504–507 (1994).

Spectrochim. Acta, Part A

M. H. Bartl, K. Gatterer, E. Cavalli, A. Speghini, and M. Bettinelli, “Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium,” Spectrochim. Acta, Part A 57, 1981–1990 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Room-temperature unpolarized emission spectrum of all the samples used in this paper. (a), (b), and (c) correspond to series I, II, and III, respectively. Pump wavelength was 808 nm.

Fig. 2
Fig. 2

Schematic energy-level diagram of Nd3+ and Yb3+ ions in YAB. The transitions of interest in this study are noted by arrows.

Fig. 3
Fig. 3

Energy-transfer efficiencies obtained for (a) series I, (b) series II, and (c) series III. Filled circles are experimental data and solid curves are the predictions made by the analytical expression obtained in this study.

Fig. 4
Fig. 4

Energy-transfer rate as a function of (a) Yb3+ and (b) Nd3+ concentrations. Filled circles are experimental data and solid lines are the best fits to Eq. (3).

Fig. 5
Fig. 5

Experimental setup used in this study. LD, laser diode; CL, collimating line; IM, input mirror; FL, focusing line; OC, output coupler.

Fig. 6
Fig. 6

Spectral dependence of ESA cross section of Nd3+ ions in YAB. Arrow indicates the Yb3+ laser wavelength (1040 nm).

Fig. 7
Fig. 7

Output laser power at 1.04 µm generated by Yb3+ ions under 1.5-W, 808-nm pumping as a function of both Yb3+ and Nd3+ concentrations.

Fig. 8
Fig. 8

Output laser power at 1.04 µm generated as a function of Yb3+ concentration for a 10-at. % Nd3+-doped sample.

Tables (1)

Tables Icon

Table 1 Spectroscopic and Laser Parameters of Yb3+ and Nd3+ Ions in YAB

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ηt=WtWNdr+WNdnr+Wt,
ηt=1.1850nm1100nmIlμmYb(λ)dλ6.2850nm1100nmIlμmNd(λ)dλ+1.1850nm1100nmIlμmYb(λ)dλ,
Wt=(2.5×103+0.4×103x)y,
ηt(x, y)=(2500+400x)y1+0.02x60×10-6+[(2500+400x)y],
Pabs=P0[1-exp(-σpxl)],
FNd=Pabsλphc,
FYb=ηtFNd=ηt Pabsλphc.
FYbth=(Ap+Ac)(T+Ld+2Labs)4σemτ,
FYbth=(Ap+Ac)(T+Ld+2Labs+2LESA)4σemτ,
dn 4F3/2dt=σpxϕ-(WNdr+WNdnr+Wt)n 4F3/2,
n 4F3/2=σpxϕWNdr+WNdnr+Wt,
Pl=(FYb-FYbth) hcλl TT+Lηc,

Metrics