Abstract

Two gain-switched Fabry–Pérot laser diodes have been used in a self-seeding scheme for widely tunable dual-wavelength optical short pulse generation. The wavelengths and their spacing can be tuned in a flexible manner by adjustment of the wavelength-selective elements that consist of a fiber Bragg grating and a tunable optical filter. The side-mode suppression ratio of the output pulses achieved is better than 26 dB over a wavelength-tuning area of approximately 30 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
    [CrossRef]
  2. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [CrossRef]
  3. I. Nitta, J. Abeles, and P. J. Delfyett, “Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser,” Appl. Opt. 39, 6799–6805 (2000).
    [CrossRef]
  4. T. Yilmaz, C. M. DePriest, P. J. Delfyett, Jr., S. Etemad, A. Braun, and J. H. Abeles, “Supermode suppression to below −130 dBc/Hz in a 10 GHz harmonically mode-locked external sigma cavity semiconductor laser,” Opt. Express 11, 1090–1095 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  5. D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard,” Opt. Lett. 28, 813–815 (2003).
    [CrossRef] [PubMed]
  6. K. W. Holman, D. J. Jones, J. Ye, and E. P. Ippen, “Orthogo-nal control of the frequency comb dynamics of a mode-locked laser diode,” Opt. Lett. 28, 2405–2407 (2003).
    [CrossRef] [PubMed]
  7. C. L. Wang and C. L. Pan, “Dual-wavelength actively mode-locked laser-diode array with an external grating-loaded cavity,” Opt. Lett. 19, 1456–1458 (1994).
    [CrossRef] [PubMed]
  8. B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
    [CrossRef]
  9. D. N. Wang and C. Shu, “Tunable dual-wavelength picosecond pulse generation using multiple-optical-path self-seeding approach,” IEEE Photon. Technol. Lett. 9, 1211–1213 (1997).
    [CrossRef]
  10. S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
    [CrossRef]
  11. D. N. Wang and J. Chen, “Simple self-seeding scheme for generation of wavelength-tunable optical short pulses,” J. Opt. Soc. Am. B 20, 2406–2409 (2003).
    [CrossRef]

2003 (4)

2000 (2)

1998 (1)

S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

1997 (1)

D. N. Wang and C. Shu, “Tunable dual-wavelength picosecond pulse generation using multiple-optical-path self-seeding approach,” IEEE Photon. Technol. Lett. 9, 1211–1213 (1997).
[CrossRef]

1994 (2)

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

C. L. Wang and C. L. Pan, “Dual-wavelength actively mode-locked laser-diode array with an external grating-loaded cavity,” Opt. Lett. 19, 1456–1458 (1994).
[CrossRef] [PubMed]

1992 (1)

P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
[CrossRef]

Abeles, J.

Abeles, J. H.

Bennion, I.

S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Braun, A.

Chan, K. T.

S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Chandalia, J.

Chen, J.

Delfyett, P. J.

Delfyett Jr., P. J.

DePriest, C. M.

Etemad, S.

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

Holman, K. W.

Ippen, E. P.

Jiang, L. A.

Jones, D. J.

Li, S. P.

S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Liu, Y.

S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Nitta, I.

Notcutt, M.

Pan, C. L.

Shu, C.

D. N. Wang and C. Shu, “Tunable dual-wavelength picosecond pulse generation using multiple-optical-path self-seeding approach,” IEEE Photon. Technol. Lett. 9, 1211–1213 (1997).
[CrossRef]

Vasil’ev, P. P.

P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
[CrossRef]

Wang, C. L.

Wang, D. N.

D. N. Wang and J. Chen, “Simple self-seeding scheme for generation of wavelength-tunable optical short pulses,” J. Opt. Soc. Am. B 20, 2406–2409 (2003).
[CrossRef]

D. N. Wang and C. Shu, “Tunable dual-wavelength picosecond pulse generation using multiple-optical-path self-seeding approach,” IEEE Photon. Technol. Lett. 9, 1211–1213 (1997).
[CrossRef]

White, I. H.

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

Ye, J.

Yilmaz, T.

Yokoyama, H.

Zhang, L.

S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

Zhu, B.

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. N. Wang and C. Shu, “Tunable dual-wavelength picosecond pulse generation using multiple-optical-path self-seeding approach,” IEEE Photon. Technol. Lett. 9, 1211–1213 (1997).
[CrossRef]

S. P. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry–Pérot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10, 1712–1714 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

P. P. Vasil’ev, “Ultrashort pulse generation in diode lasers,” Opt. Quantum Electron. 24, 801–824 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration for the tunable dual-wavelength self-seeding scheme.

Fig. 2
Fig. 2

Output spectra of the two gain-switched FP laser diodes.

Fig. 3
Fig. 3

Tunable dual-wavelength self-seeded output spectra at (a) 1528.4 and 1530.1 nm and (b) 1526.8 and 1554.2 nm.

Fig. 4
Fig. 4

Tunable dual-wavelength self-seeded output spectra with fixed wavelength spacing at (a) 1528.6 and 1533.4 nm and (b) 1536.3 and 1541.1 nm.

Fig. 5
Fig. 5

Self-seeded output pulse trains at 1528.4-nm wavelength.

Fig. 6
Fig. 6

Measured values of the SMSR obtained at different wavelengths in the dual-wavelength operation.

Metrics