Abstract

A quasi-optic terahertz (THz) imaging system that utilizes optoelectronic methods for pulsed THz generation and reception and optical methods for image formation is demonstrated and theoretically explained. The system can be used to produce coherent, field amplitude, and energy density images with diffraction-limited resolution in two transverse dimensions. Simultaneous bandwidth-limited resolution is achieved in the depth dimension by means of the ranging capabilities of the system. The system is shown to accurately produce images of several objects to verify diffraction-limited imaging. Imaging power is extended by aperture synthesis to result in transverse resolution the order of a wavelength. Several individual, coherent images are recorded, each synthetically appearing to be formed by a different element of an optical phased array. The multiple images are simply superposed to create a higher-resolution image. Theoretical calculations fully describe the broadband imaging and include aberration and diffraction effects to further verify system performance. Calculated images are a good match with experimental results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
    [CrossRef]
  2. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
    [CrossRef]
  3. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
    [CrossRef]
  4. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [CrossRef]
  5. M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
    [CrossRef]
  6. K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
    [CrossRef]
  7. J. O’Hara and D. Grischkowsky, “Synthetic phased-array terahertz imaging,” Opt. Lett. 27, 1070–1072 (2002).
    [CrossRef]
  8. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
    [CrossRef]
  9. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373–10379 (1996).
    [CrossRef]
  10. M. P. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
    [CrossRef]
  11. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  12. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef] [PubMed]
  13. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
    [CrossRef] [PubMed]
  14. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [CrossRef]
  15. Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 1114–1116 (1998).
    [CrossRef]
  16. J. O’Hara and D. Grischkowsky, “Quasi-optic terahertz imaging,” Opt. Lett. 26, 1918–1920 (2001).
    [CrossRef]
  17. N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222–224 (1991).
    [CrossRef]
  18. A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
    [CrossRef]
  19. A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle pulses,” Opt. Lett. 26, 681–683 (2001).
    [CrossRef]
  20. J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 592–599 (2001).
    [CrossRef]
  21. S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875–877 (2001).
    [CrossRef]
  22. J. O’Hara, “Experimental study of a quasi-optic synthetic phased-array terahertz imaging system,” Ph.D. dissertation (School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Okla., 2003).
  23. M. Ryle and A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc. 120, 220–230 (1960).
  24. P. J. Napier, A. R. Thompson, and R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1322 (1983).
    [CrossRef]
  25. P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
    [CrossRef]
  26. A. Labeyrie, “Interference fringes obtained on Vega with two optical telescopes,” Astrophys. J. Lett. 196, L71–L75 (1975).
    [CrossRef]
  27. A. R. Haijan and J. T. Armstrong, “A sharper view of the stars,” Sci. Am. 284, 56–63 (2001).
    [CrossRef]
  28. A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag. 46, 730–735 (1998).
    [CrossRef]
  29. D. Mensa, High Resolution Radar Imaging (Artech House, Dedham, Mass., 1981).
  30. T. D. Dorney, J. L. Johnson, J. Van Rudd, R. G. Baraniuk, W. W. Symes, and D. M. Mittleman, “Terahertz reflection imaging using Kirchhoff migration,” Opt. Lett. 26, 1513–1515 (2001).
    [CrossRef]
  31. J. D. Kraus, Radio Astronomy (McGraw-Hill, New York, 1966).
  32. D. R. Wehner, High Resolution Radar (Artech House, Norwood, Mass., 1987).
  33. R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
    [CrossRef]
  34. J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol, England, 1986).
  35. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  36. E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, Calif., 2002).
  37. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, England, 1999).
  38. Y. Li and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers,” J. Opt. Soc. Am. A 1, 801–808 (1984).
    [CrossRef]

2002 (1)

2001 (7)

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[CrossRef]

J. O’Hara and D. Grischkowsky, “Quasi-optic terahertz imaging,” Opt. Lett. 26, 1918–1920 (2001).
[CrossRef]

A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle pulses,” Opt. Lett. 26, 681–683 (2001).
[CrossRef]

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 592–599 (2001).
[CrossRef]

S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875–877 (2001).
[CrossRef]

A. R. Haijan and J. T. Armstrong, “A sharper view of the stars,” Sci. Am. 284, 56–63 (2001).
[CrossRef]

T. D. Dorney, J. L. Johnson, J. Van Rudd, R. G. Baraniuk, W. W. Symes, and D. M. Mittleman, “Terahertz reflection imaging using Kirchhoff migration,” Opt. Lett. 26, 1513–1515 (2001).
[CrossRef]

2000 (1)

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

1998 (2)

A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag. 46, 730–735 (1998).
[CrossRef]

Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 1114–1116 (1998).
[CrossRef]

1997 (2)

1996 (3)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373–10379 (1996).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

1995 (3)

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[CrossRef] [PubMed]

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

1994 (1)

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

1991 (1)

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222–224 (1991).
[CrossRef]

1990 (2)

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

1989 (1)

1986 (1)

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

1984 (2)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Y. Li and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers,” J. Opt. Soc. Am. A 1, 801–808 (1984).
[CrossRef]

1983 (1)

P. J. Napier, A. R. Thompson, and R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1322 (1983).
[CrossRef]

1975 (1)

A. Labeyrie, “Interference fringes obtained on Vega with two optical telescopes,” Astrophys. J. Lett. 196, L71–L75 (1975).
[CrossRef]

1960 (1)

M. Ryle and A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc. 120, 220–230 (1960).

Armstrong, J. T.

A. R. Haijan and J. T. Armstrong, “A sharper view of the stars,” Sci. Am. 284, 56–63 (2001).
[CrossRef]

Auston, D. H.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Bagri, D. S.

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

Baraniuk, R. G.

Boivin, L.

Broquetas, A.

A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag. 46, 730–735 (1998).
[CrossRef]

Cardama, A.

A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag. 46, 730–735 (1998).
[CrossRef]

Chen, T. C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Cheville, R. A.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[CrossRef]

S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875–877 (2001).
[CrossRef]

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

Chi, C.-C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Clark, B. G.

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

Decker, J.

den Dekker, A. J.

Dorney, T. D.

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 592–599 (2001).
[CrossRef]

T. D. Dorney, J. L. Johnson, J. Van Rudd, R. G. Baraniuk, W. W. Symes, and D. M. Mittleman, “Terahertz reflection imaging using Kirchhoff migration,” Opt. Lett. 26, 1513–1515 (2001).
[CrossRef]

Duling III, I. N.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Ekers, R. D.

P. J. Napier, A. R. Thompson, and R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1322 (1983).
[CrossRef]

Fattinger, C.

Grischkowsky, D.

J. O’Hara and D. Grischkowsky, “Synthetic phased-array terahertz imaging,” Opt. Lett. 27, 1070–1072 (2002).
[CrossRef]

J. O’Hara and D. Grischkowsky, “Quasi-optic terahertz imaging,” Opt. Lett. 26, 1918–1920 (2001).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222–224 (1991).
[CrossRef]

M. P. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Grischkowsky, D. R.

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

Haijan, A. R.

A. R. Haijan and J. T. Armstrong, “A sharper view of the stars,” Sci. Am. 284, 56–63 (2001).
[CrossRef]

Halas, N. J.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Halbout, J.-M.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Harmon, S. A.

S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875–877 (2001).
[CrossRef]

Hewish, A.

M. Ryle and A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc. 120, 220–230 (1960).

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Hu, B. B.

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[CrossRef] [PubMed]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Hunsche, S.

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[CrossRef]

Jiang, Z.

Jofre, L.

A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag. 46, 730–735 (1998).
[CrossRef]

Johnson, J. L.

T. D. Dorney, J. L. Johnson, J. Van Rudd, R. G. Baraniuk, W. W. Symes, and D. M. Mittleman, “Terahertz reflection imaging using Kirchhoff migration,” Opt. Lett. 26, 1513–1515 (2001).
[CrossRef]

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 592–599 (2001).
[CrossRef]

Kash, J. A.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Katzenellenbogen, N.

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222–224 (1991).
[CrossRef]

Keiding, S. R.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[CrossRef]

Ketchen, M. B.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Kindt, J. T.

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373–10379 (1996).
[CrossRef]

Krishnamurthy, S.

S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875–877 (2001).
[CrossRef]

Labeyrie, A.

A. Labeyrie, “Interference fringes obtained on Vega with two optical telescopes,” Astrophys. J. Lett. 196, L71–L75 (1975).
[CrossRef]

Le Hors, L.

Li, G. P.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Li, Y.

McClatchey, K.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[CrossRef]

McGowan, R. W.

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

Mittleman, D. M.

T. D. Dorney, J. L. Johnson, J. Van Rudd, R. G. Baraniuk, W. W. Symes, and D. M. Mittleman, “Terahertz reflection imaging using Kirchhoff migration,” Opt. Lett. 26, 1513–1515 (2001).
[CrossRef]

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 592–599 (2001).
[CrossRef]

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef] [PubMed]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Napier, P. J.

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

P. J. Napier, A. R. Thompson, and R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1322 (1983).
[CrossRef]

Norris, T. B.

Nuss, M. C.

O’Hara, J.

Palau, J.

A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag. 46, 730–735 (1998).
[CrossRef]

Reiten, M. T.

S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875–877 (2001).
[CrossRef]

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[CrossRef]

Rogers, A. E. E.

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

Romney, J. D.

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

Rudd, J. V.

Ruffin, A. B.

Ryle, M.

M. Ryle and A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc. 120, 220–230 (1960).

Sanchez-Palencia, L.

Schmuttenmaer, C. A.

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373–10379 (1996).
[CrossRef]

Smith, P. R.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Symes, W. W.

Thompson, A. R.

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

P. J. Napier, A. R. Thompson, and R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1322 (1983).
[CrossRef]

Thrane, L.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[CrossRef]

Uhd Jepsen, P.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[CrossRef]

van den Bos, A.

van Exter, M.

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

van Exter, M. P.

Van Rudd, J.

Walker, R. C.

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

Whitaker, J. F.

Wolf, E.

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Zhang, X.-C.

Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 1114–1116 (1998).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Appl. Phys. Lett. (8)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79, 4485–4487 (2001).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett. 58, 222–224 (1991).
[CrossRef]

S. Krishnamurthy, M. T. Reiten, S. A. Harmon, and R. A. Cheville, “Characterization of thin polymer films using terahertz time-domain interferometry,” Appl. Phys. Lett. 79, 875–877 (2001).
[CrossRef]

Astrophys. J. Lett. (1)

A. Labeyrie, “Interference fringes obtained on Vega with two optical telescopes,” Astrophys. J. Lett. 196, L71–L75 (1975).
[CrossRef]

Chem. Phys. Lett. (1)

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 592–599 (2001).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field imaging and radar cross-section measurement,” IEEE Trans. Antennas Propag. 46, 730–735 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

R. W. McGowan, R. A. Cheville, and D. R. Grischkowsky, “Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging,” IEEE Trans. Microwave Theory Tech. 48, 417–422 (2000).
[CrossRef]

M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. (1)

J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100, 10373–10379 (1996).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

M. Ryle and A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc. 120, 220–230 (1960).

Opt. Lett. (8)

Proc. IEEE (2)

P. J. Napier, A. R. Thompson, and R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1322 (1983).
[CrossRef]

P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. Thompson, and R. C. Walker, “The very long baseline array,” Proc. IEEE 82, 658–672 (1994).
[CrossRef]

Sci. Am. (1)

A. R. Haijan and J. T. Armstrong, “A sharper view of the stars,” Sci. Am. 284, 56–63 (2001).
[CrossRef]

Other (8)

J. D. Kraus, Radio Astronomy (McGraw-Hill, New York, 1966).

D. R. Wehner, High Resolution Radar (Artech House, Norwood, Mass., 1987).

D. Mensa, High Resolution Radar Imaging (Artech House, Dedham, Mass., 1981).

J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol, England, 1986).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, Calif., 2002).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, England, 1999).

J. O’Hara, “Experimental study of a quasi-optic synthetic phased-array terahertz imaging system,” Ph.D. dissertation (School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Okla., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Quasi-optic THz imaging system. The line shows the THz path through the system. The inset shows a close-up view of the object and scan planes.

Fig. 2
Fig. 2

THz (a) transmitter and (b) receiver.

Fig. 3
Fig. 3

Single measured spatial sample of a THz image. Inset shows the normalized amplitude spectrum. Time axis (in picoseconds) can be translated to depth (in millimeters) because of the ranging configuration.

Fig. 4
Fig. 4

Measured THz image of a 1-mm steel ball (point source): (a) plot comprised of a set of curves constant in x and (b) side view of plot comprised of a set of curves constant in time.

Fig. 5
Fig. 5

Side view of the phased-array THz imaging system. Normal and tilted scan planes are shown as solid and dotted lines, respectively.

Fig. 6
Fig. 6

Time overlap of two measured phase reference waveforms, dashed and solid curves, for different scan plane orientations.

Fig. 7
Fig. 7

Side view of the artificial aperture doubling model.

Fig. 8
Fig. 8

Double 391-µm ball object for arrayed imaging.

Fig. 9
Fig. 9

Slice x=0 through the measured phased-array image of two 391-µm balls. Dashed curves indicate negative contours. Contours are separated by 7 pA.

Fig. 10
Fig. 10

Measured transverse images of two 391-µm balls: (a) total integrated energy density image, (b) partial integrated energy density image with double-reflection excluded; (c) isoamplitude image whose surfaces contain data values having an amplitude greater than 40 pA (80% peak).

Fig. 11
Fig. 11

(a) Scale diagram of the T-ball object. Dashed lines indicate the center of the data set. (b) Overlap of separately normalized partial energy density images of T and ball. Contour at 0.3 removed from the ball image. Contours at 0.1 and 0.2 removed from both images.

Fig. 12
Fig. 12

Measured partial energy density images of T-ball object, both separately normalized. Contour separation is 0.1: (a) image of ball, heavy contour indicates the half-maximum and (b) image of T.

Fig. 13
Fig. 13

Setup of the hybrid THz imaging system model.

Fig. 14
Fig. 14

Setup for the diffraction portion of the calculation.

Fig. 15
Fig. 15

Normalized field magnitude slices of the theoretical point source image at 0.7 THz: (a) v=0 slice and (b) u=0 slice.

Fig. 16
Fig. 16

Normalized transverse slices through the theoretical point source image at 0.7 THz: (a) z0=574 mm, (b) z0=586 mm, (c) z0=610 mm, (d) z0=622 mm.

Fig. 17
Fig. 17

Normalized transverse COLC field magnitude slice through the theoretical point source image at 0.7 THz; z0=598 mm.

Fig. 18
Fig. 18

Ideal input pulse for theoretical calculations. Inset shows the normalized amplitude spectrum.

Fig. 19
Fig. 19

Broadband u=0 slice through the theoretical image of the point source.

Fig. 20
Fig. 20

Broadband v=0 slice through the theoretical image of the point source with the corrected illumination effect.

Fig. 21
Fig. 21

Slice u=0 through the normalized theoretical arrayed image of two point sources separated by 400 µm in y and 50 µm in z. Contour separation is 0.15. Dashed curves indicate negative contours. The image was shifted -200 µm in v compared with Fig. 9.

Fig. 22
Fig. 22

Theoretical transverse image of two point sources: (a) energy density image and (b) iso-amplitude image where plotted surfaces contain data values where the electric-field amplitude is greater than 80% of the maximum. Both images were shifted -200 µm in v compared with Fig. 10.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G(x, y)=1η0 (E1+E2+E3++En)2dt.
Gn(x, y)1η0 En2dt.
F(ω)=-f(t)exp(jωt)dt,
f(t)=12π -F(ω)exp(-jωt)dω.
HΓ(u, v, ω)=z0jλ  U(ξ, η, ω) exp(jkr)r2 dξdη.
HΓ(u, v, ω)=z0jλ  exp[jk(r+Δ)]r2 dξdη.
UΓ(u, v, ω)=S(ω)HΓ(u, v, ω).
UΓ(u, v, t)=12π -S(ω)HΓ(u, v, ω)exp(-jωt)dω.

Metrics