Abstract

The performance of distributed fiber sensors based on spontaneous Brillouin scattering is largely determined by the peak power governed by nonlinear thresholds that can be launched into the sensing fiber. Our investigations show that, in long-range (>20-km) sensors that use a standard single-mode fiber operating at 1.5 µm, modulation instability can limit the acceptable pulse power to below 100 mW. Using a nonzero dispersion-shifted fiber with negative dispersion we can avoid this problem and obtain a ninefold increase in launched power.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Parker, M. Farhadirousham, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
    [CrossRef]
  2. S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
    [CrossRef]
  3. K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
    [CrossRef]
  4. P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors,” Opt. Commun. 144, 17–23 (1997).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995), Chap. 5.
  6. M. Karlsson, “Modulational instability in lossy optical fibers,” J. Opt. Soc. Am. B 12, 2071–2077 (1995).
  7. A. Hasegawa and K. Tai, “Effects of modulational instability on coherent transmission systems,” Opt. Lett. 14, 512–513 (1989).
    [CrossRef] [PubMed]
  8. P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508–510 (2001).
    [CrossRef]

2002 (1)

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

2001 (2)

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508–510 (2001).
[CrossRef]

1997 (2)

T. Parker, M. Farhadirousham, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors,” Opt. Commun. 144, 17–23 (1997).
[CrossRef]

1995 (1)

1989 (1)

Farhadirousham, M.

T. Parker, M. Farhadirousham, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Handerek, V. A.

T. Parker, M. Farhadirousham, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Hartog, A. H.

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508–510 (2001).
[CrossRef]

Hasegawa, A.

Hotate, K.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

Karlsson, M.

Kee, H. H.

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

Maughan, S. M.

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

Newson, T. P.

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors,” Opt. Commun. 144, 17–23 (1997).
[CrossRef]

Parker, T.

T. Parker, M. Farhadirousham, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Rogers, A. J.

T. Parker, M. Farhadirousham, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Souza, K. D.

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors,” Opt. Commun. 144, 17–23 (1997).
[CrossRef]

Tai, K.

Tanaka, M.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

Wait, P. C.

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508–510 (2001).
[CrossRef]

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors,” Opt. Commun. 144, 17–23 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Parker, M. Farhadirousham, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photon. Technol. Lett. 14, 179–181 (2002).
[CrossRef]

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508–510 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12, 834–842 (2001).
[CrossRef]

Opt. Commun. (1)

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors,” Opt. Commun. 144, 17–23 (1997).
[CrossRef]

Opt. Lett. (1)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Gain spectrum of MI in lossless fiber versus input power. Parameters are β2=-20 ps2 km-1 and γ=2 W-1 km-1 at 1550 nm. From Agrawal.5

Fig. 2
Fig. 2

Spatially integrated gain (G) (right side) and critical frequency (fc) (left side) along a standard SMF versus distance for launched pulse powers of 100–400 mW (D=17 ps nm-1 km-1, γ=2 W-1 km-1, α=0.045 km-1).

Fig. 3
Fig. 3

Experimental configuration. The source was an amplified distributed-feedback laser at 1533 nm with a linewidth <10 MHz and gated to generate a 100-ns pulse width and a peak power up to 400 mW.

Fig. 4
Fig. 4

Power spectra for different pulse powers at the output end of (a) the SMF and (b) the MetroCor fiber.

Fig. 5
Fig. 5

Measured MI gain spectrum at the output end of 20 km of the SMF for pulse powers from 100 to 400 mW.

Fig. 6
Fig. 6

Backscattered spectrum measured at the front end of the SMF for various input powers. The two central peaks are the Brillouin Stokes and anti-Stokes signals. The outer peaks are the Rayleigh-backscattered signals from the spectrally broadened pulse.

Fig. 7
Fig. 7

Temperature drift along (a) a 20 km of SMF and (b) a 20 km of MetroCor fiber for various launched powers. The inner plot in (b) represents a heated section 10 km along the MetroCor fiber.

Fig. 8
Fig. 8

rms temperature errors along the characterized sensing fibers at 400-mW launched power.

Fig. 9
Fig. 9

(a) Evidence of simulated Raman scattering (SRS) measured at the output end of 25 km of MetroCor fiber. The rapidly rising Raman Stokes signal increases with input power and indicates the onset of stimulated Raman scattering. (b) The ratio of the Raman Stokes and anti-Stokes versus input power indicates that the onset of stimulated Raman scattering occurs at around 900 mW.

Tables (2)

Tables Icon

Table 1 Characteristics of the Compared Fibers

Tables Icon

Table 2 Theoretical and Measured MI Gain and Critical Frequency in SMFs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G(ω)=|β2ω|[(ωc2-ω2)]1/2.
ωc2=4γP0|β2|.
ωmax=±ωc2=±2γP0|β2|1/2.

Metrics