Abstract

We investigate the highly sensitive surface-induced photorefractive gratings, observed in undoped nematic planar cells for low dc voltage (few volts) and laser intensity (few milliwatts per square centimeter). Forced-light-scattering and two-beam coupling measurements on E7 nematic samples, aligned with rubbed polyvinyl alcohol layers, verify the orientational effect of a space-charge field and the crucial role of the polymer–liquid-crystal interface in the photoinduced processes, through a wavelength-dependent photoelectric activation. The experimental behavior supports the surface-induced photorefractive effect model, according to which light with the proper wavelength locally reduces the interfacial charge density, thus producing a space-charge electric field in the cell.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gunter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1989), Vols. 1 and 2.
  2. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  3. W. E. Moerner, A. Grunnet Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997) and references therein.
    [CrossRef]
  4. B. Kippelen, K. Meerholz, and N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).
  5. H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
    [CrossRef]
  6. E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994) and references therein.
  7. I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
    [CrossRef]
  8. G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001) and references therein.
    [CrossRef]
  9. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules,” Adv. Mater. 12, 1533–1536 (2000).
    [CrossRef]
  10. P. Pagliusi, R. Macdonald, S. Bush, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632–1638 (2001).
    [CrossRef]
  11. P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
    [CrossRef]
  12. P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys. 92, 4863–4869 (2002).
    [CrossRef]
  13. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414–416 (2000).
    [CrossRef]
  14. V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
    [CrossRef]
  15. F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245, 429–436 (1999) and references therein.
    [CrossRef]
  16. A. Golemme, B. Kippelen, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655–660 (2000).
    [CrossRef]
  17. H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144–1146 (1997).
    [CrossRef] [PubMed]
  18. M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
    [CrossRef] [PubMed]
  19. P. Pagliusi and G. Cipparrone, “Extremely sensitive light-induced reorientation in nondoped nematic liquid crystal cells due to photoelectric activation of the interface,” J. Appl. Phys. 93, 9116–9122 (2003).
    [CrossRef]
  20. H. A. van Sprang, “Combined tilt and thickness measurements on nematic liquid crystal samples,” Mol. Cryst. Liq. Cryst. 199, 19–26 (1991).
    [CrossRef]
  21. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  22. See, for example, W. N. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351, 49–50 (1991).
    [CrossRef]
  23. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20, 2137–2139 (1995).
    [CrossRef] [PubMed]
  24. I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525–534 (1996).
    [CrossRef]
  25. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), pp. 28–36.
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  27. See, for example, J. Yang, I. Shalish, and Y. Shapira, “Photoinduced charge carriers at surfaces and interfaces of poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene] with Au and GaAs,” Phys. Rev. B 64, 035325 (2001).
    [CrossRef]
  28. J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992).
  29. P. Pagliusi and G. Cipparrone, “Optical two-beam coupling for a surface-induced photorefractive effect in undoped liquid crystals,” Opt. Lett. 28, 2369–2371 (2003).
    [CrossRef] [PubMed]
  30. P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photo-induced surface-charge modulation in undoped liquid crystals,” submitted to Phys. Rev. E.

2003 (2)

P. Pagliusi and G. Cipparrone, “Extremely sensitive light-induced reorientation in nondoped nematic liquid crystal cells due to photoelectric activation of the interface,” J. Appl. Phys. 93, 9116–9122 (2003).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Optical two-beam coupling for a surface-induced photorefractive effect in undoped liquid crystals,” Opt. Lett. 28, 2369–2371 (2003).
[CrossRef] [PubMed]

2002 (3)

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys. 92, 4863–4869 (2002).
[CrossRef]

M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
[CrossRef] [PubMed]

2001 (5)

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
[CrossRef]

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001) and references therein.
[CrossRef]

P. Pagliusi, R. Macdonald, S. Bush, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632–1638 (2001).
[CrossRef]

See, for example, J. Yang, I. Shalish, and Y. Shapira, “Photoinduced charge carriers at surfaces and interfaces of poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene] with Au and GaAs,” Phys. Rev. B 64, 035325 (2001).
[CrossRef]

2000 (3)

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules,” Adv. Mater. 12, 1533–1536 (2000).
[CrossRef]

A. Golemme, B. Kippelen, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655–660 (2000).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414–416 (2000).
[CrossRef]

1999 (1)

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245, 429–436 (1999) and references therein.
[CrossRef]

1997 (3)

W. E. Moerner, A. Grunnet Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997) and references therein.
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144–1146 (1997).
[CrossRef] [PubMed]

1996 (1)

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525–534 (1996).
[CrossRef]

1995 (1)

1994 (1)

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994) and references therein.

1991 (2)

H. A. van Sprang, “Combined tilt and thickness measurements on nematic liquid crystal samples,” Mol. Cryst. Liq. Cryst. 199, 19–26 (1991).
[CrossRef]

See, for example, W. N. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351, 49–50 (1991).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Boichuk, V.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

Bush, S.

Chen, P. H.

I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
[CrossRef]

Cipparrone, G.

P. Pagliusi and G. Cipparrone, “Optical two-beam coupling for a surface-induced photorefractive effect in undoped liquid crystals,” Opt. Lett. 28, 2369–2371 (2003).
[CrossRef] [PubMed]

P. Pagliusi and G. Cipparrone, “Extremely sensitive light-induced reorientation in nondoped nematic liquid crystal cells due to photoelectric activation of the interface,” J. Appl. Phys. 93, 9116–9122 (2003).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys. 92, 4863–4869 (2002).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[CrossRef]

P. Pagliusi, R. Macdonald, S. Bush, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632–1638 (2001).
[CrossRef]

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245, 429–436 (1999) and references therein.
[CrossRef]

Eidenschink, R.

M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
[CrossRef] [PubMed]

Gibbons, W. N.

See, for example, W. N. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351, 49–50 (1991).
[CrossRef]

Golemme, A.

A. Golemme, B. Kippelen, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655–660 (2000).
[CrossRef]

Grunnet Jepsen, A.

W. E. Moerner, A. Grunnet Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997) and references therein.
[CrossRef]

Hanisch, F.

M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
[CrossRef] [PubMed]

Kawatsuki, N.

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144–1146 (1997).
[CrossRef] [PubMed]

Khoo, I. C.

I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
[CrossRef]

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525–534 (1996).
[CrossRef]

I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20, 2137–2139 (1995).
[CrossRef] [PubMed]

Kippelen, B.

A. Golemme, B. Kippelen, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655–660 (2000).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kreuzer, M.

M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
[CrossRef] [PubMed]

P. Pagliusi, R. Macdonald, S. Bush, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632–1638 (2001).
[CrossRef]

Kucheev, S.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

Macdonald, R.

Marrucci, L.

M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
[CrossRef] [PubMed]

Mazzulla, A.

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245, 429–436 (1999) and references therein.
[CrossRef]

Moerner, W. E.

W. E. Moerner, A. Grunnet Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997) and references therein.
[CrossRef]

Ono, H.

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals,” Opt. Lett. 22, 1144–1146 (1997).
[CrossRef] [PubMed]

Ostroverkhov, V.

Pagliusi, P.

P. Pagliusi and G. Cipparrone, “Extremely sensitive light-induced reorientation in nondoped nematic liquid crystal cells due to photoelectric activation of the interface,” J. Appl. Phys. 93, 9116–9122 (2003).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Optical two-beam coupling for a surface-induced photorefractive effect in undoped liquid crystals,” Opt. Lett. 28, 2369–2371 (2003).
[CrossRef] [PubMed]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys. 92, 4863–4869 (2002).
[CrossRef]

P. Pagliusi, R. Macdonald, S. Bush, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632–1638 (2001).
[CrossRef]

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245, 429–436 (1999) and references therein.
[CrossRef]

Paparo, D.

M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
[CrossRef] [PubMed]

Parka, J.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

Peyghambarian, N.

A. Golemme, B. Kippelen, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655–660 (2000).
[CrossRef]

Reshetnyak, V.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414–416 (2000).
[CrossRef]

Reznikov, Y.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

Reznikov, Yu.

Rudenko, E. V.

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994) and references therein.

Shalish, I.

See, for example, J. Yang, I. Shalish, and Y. Shapira, “Photoinduced charge carriers at surfaces and interfaces of poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene] with Au and GaAs,” Phys. Rev. B 64, 035325 (2001).
[CrossRef]

Shannon, P. J.

See, for example, W. N. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351, 49–50 (1991).
[CrossRef]

Shapira, Y.

See, for example, J. Yang, I. Shalish, and Y. Shapira, “Photoinduced charge carriers at surfaces and interfaces of poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene] with Au and GaAs,” Phys. Rev. B 64, 035325 (2001).
[CrossRef]

Shih, M. Y.

I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
[CrossRef]

Shishido, A.

I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
[CrossRef]

Shiyanovskaya, I.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

Simoni, F.

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245, 429–436 (1999) and references therein.
[CrossRef]

Singer, K. D.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414–416 (2000).
[CrossRef]

Slussarenko, S.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

Sukhov, A. V.

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994) and references therein.

Sun, S. T.

See, for example, W. N. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351, 49–50 (1991).
[CrossRef]

Swetlin, B. J.

See, for example, W. N. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351, 49–50 (1991).
[CrossRef]

Thompson, C. L.

W. E. Moerner, A. Grunnet Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997) and references therein.
[CrossRef]

van Sprang, H. A.

H. A. van Sprang, “Combined tilt and thickness measurements on nematic liquid crystal samples,” Mol. Cryst. Liq. Cryst. 199, 19–26 (1991).
[CrossRef]

Wasielewski, M. R.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules,” Adv. Mater. 12, 1533–1536 (2000).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001) and references therein.
[CrossRef]

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules,” Adv. Mater. 12, 1533–1536 (2000).
[CrossRef]

Wood, M. V.

I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
[CrossRef]

Yang, J.

See, for example, J. Yang, I. Shalish, and Y. Shapira, “Photoinduced charge carriers at surfaces and interfaces of poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene] with Au and GaAs,” Phys. Rev. B 64, 035325 (2001).
[CrossRef]

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules,” Adv. Mater. 12, 1533–1536 (2000).
[CrossRef]

Zhang, J.

Adv. Mater. (1)

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “Photorefractivity in ferroelectric liquid crystal composites containing electron donor and acceptor molecules,” Adv. Mater. 12, 1533–1536 (2000).
[CrossRef]

Annu. Rev. Mater. Res. (1)

G. P. Wiederrecht, “Photorefractive liquid crystals,” Annu. Rev. Mater. Res. 31, 139–169 (2001) and references therein.
[CrossRef]

Annu. Rev. Mater. Sci. (1)

W. E. Moerner, A. Grunnet Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997) and references therein.
[CrossRef]

Appl. Phys. Lett. (2)

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett. 71, 1162–1164 (1997).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168–170 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chem. Phys. (1)

F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys. 245, 429–436 (1999) and references therein.
[CrossRef]

Chem. Phys. Lett. (1)

A. Golemme, B. Kippelen, and N. Peyghambarian, “On the mechanism of orientational photorefractivity in polymer dispersed nematics,” Chem. Phys. Lett. 319, 655–660 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525–534 (1996).
[CrossRef]

J. Appl. Phys. (3)

P. Pagliusi and G. Cipparrone, “Extremely sensitive light-induced reorientation in nondoped nematic liquid crystal cells due to photoelectric activation of the interface,” J. Appl. Phys. 93, 9116–9122 (2003).
[CrossRef]

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys. 90, 5963–5967 (2001).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys. 92, 4863–4869 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP (1)

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994) and references therein.

Mol. Cryst. Liq. Cryst. (1)

H. A. van Sprang, “Combined tilt and thickness measurements on nematic liquid crystal samples,” Mol. Cryst. Liq. Cryst. 199, 19–26 (1991).
[CrossRef]

Nature (1)

See, for example, W. N. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid-crystals with polarized laser-light,” Nature 351, 49–50 (1991).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. (1)

I. C. Khoo, M. Y. Shih, A. Shishido, P. H. Chen, and M. V. Wood, “Liquid crystal photorefractivity—towards supra-optical nonlinearity,” Opt. Mater. 18, 85–90 (2001) and references therein.
[CrossRef]

Phys. Rev. B (1)

See, for example, J. Yang, I. Shalish, and Y. Shapira, “Photoinduced charge carriers at surfaces and interfaces of poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene] with Au and GaAs,” Phys. Rev. B 64, 035325 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. Kreuzer, F. Hanisch, R. Eidenschink, D. Paparo, and L. Marrucci, “Large deuterium isotope effect in the optical nonlinearity of dye-doped liquid crystals,” Phys. Rev. Lett. 88, 013902 (2002) and references therein.
[CrossRef] [PubMed]

Other (7)

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), pp. 28–36.

B. Kippelen, K. Meerholz, and N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).

P. Gunter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1989), Vols. 1 and 2.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992).

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photo-induced surface-charge modulation in undoped liquid crystals,” submitted to Phys. Rev. E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

FLS experimental arrangement for diffraction grating investigations on a LC cell. Two pump beams (Ea and Eb) interfere on the cell whose optical axis is parallel oriented with respect to the grating vector. A polarized He–Ne laser probe beam (dashed line) impinges on the sample and experiences diffraction owing to the optical grating.

Fig. 2
Fig. 2

DEs for s- and p-polarized probe beams are reported versus the pump beam intensity (I0) in the following experimental condition: s-polarized pump beams at λ=457.9 nm, spatial periodicity Λ40 µm, and applied dc voltage Vdc=3.0 V.

Fig. 3
Fig. 3

DEs for s- and p-polarized probe beams are reported versus the applied dc voltage (Vdc) in the following experimental condition: s-polarized pump beams at λ=457.9 nm, spatial periodicity Λ40 µm, and writing intensity I0=2.5 mW/cm2.

Fig. 4
Fig. 4

DEs for s- and p-polarized probe beams are reported versus the ac-voltage amplitude (A) in the following experimental condition: s-polarized pump beams at λ=457.9 nm, spatial periodicity Λ40 µm, dc-voltage component Vdc=1.8 V, and writing intensity I0=2.5 mW/cm2.

Fig. 5
Fig. 5

DEs for s- and p-polarized probe beams are reported versus the interference pattern periodicity (Λ) in the following experimental condition: s-polarized pump beams at λ=457.9 nm, dc voltage Vdc=3.0 V, and writing intensity I0=7.0 mW/cm2.

Fig. 6
Fig. 6

DEs for s- and p-polarized probe beams are reported versus the pump beam wavelength (λ) in the following experimental condition: s-polarized pump beams, spatial periodicity Λ40 µm, dc voltage Vdc=3.0 V, and writing intensity I0=7.0 mW/cm2.

Fig. 7
Fig. 7

Absorbance spectrum of a 10-mm-thick PVA solution (2% by weight in water).

Fig. 8
Fig. 8

DE of a p-polarized probe beam is reported versus irradiation time, changing the dc-voltage preapplication period. In curve 1, pump beams and dc voltage are simultaneously applied (Δτ10). In curve 2, the dc voltage is applied Δτ2120 s before irradiation. The inset shows the DE decay, caused by switching the pump beams off, and the fitting exponential curve ηexp(-t/τD), where τD30 s.

Fig. 9
Fig. 9

Wave mixing in the TBC experiment.

Fig. 10
Fig. 10

TBC measurements by means of the grating translation technique. (a) The transmitted pump beam intensities Ia and Ib and (b) their sum Ia+Ib and difference Ia-Ib are reported versus the grating displacement δ along q, in the following experimental condition: p-polarized pump beams, spatial periodicity Λ40 µm, dc voltage Vdc=3.0 V, and writing intensity I0=20 µW/cm2.

Fig. 11
Fig. 11

(a) Outline of the director reorientations induced by two uniform electric fields having opposite x components but equal modulus, in a planar cell with a small pretilt α0. (b) Reorientation angle profiles, α1(z) and α2(z), along the cell thickness have been numerically calculated for β1=0.48π and β2=0.52π.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I(x)1-cos(qr)=1-cos(qx),
n(λ, p, x)=n0+Δn cos(qx-ϕn),
K(λ, p, x)=K0+ΔK cos(qx-ϕK),
η(πdΔn/λ)2+(dΔK/4)2,
V(t)=Vdc+Vac=Vdc+A sin(2πft),
Ia=I0 exp[-K0d/cos(θ/2)](1-2A cos ϕK-2P sin ϕn),
Ib=I0 exp[-K0d/cos(θ/2)](1-2A cos ϕK+2P sin ϕn),
AΔKd/[4 cos(θ/2)],PπΔnd/[λ cos(θ/2)]
ϕjϕj+2πδ/Λj=K, n,
I+(δ)Ia(δ)+Ib(δ)=I0 exp[-K0d/cos(θ/2)]×[2-4A cos(ϕK+2πδ/Λ)],
I-(δ)Ia(δ)-Ib(δ)=I0 exp[-K0d/cos(θ/2)]×[-4P sin(ϕn+2πδ/Λ)],
ΓE=-0Δ[(Ez2-Ex2 sin2 qx)cos α sin α+EzEx cos 2α sin qx]ey-0Δ(Ez2 cos α sin α+EzEx cos 2α sin qx)ey.
2kd2α/dz2+0ΔE2 sin[2(β-α)]=0.
n2=Δn/ΔI24cm2/W,

Metrics