Abstract

We have investigated the generation of new undesirable frequencies in a two-pump optical parametric amplifier, which are generated by the four-wave mixing of a signal or idler with one of the strong pump waves. The powers of the new frequencies impose upper bounds on the device gain and output power if cross talk is to be avoided. In the parametric amplifier we investigated, however, we found that, for 7.5 dB of gain and -3.5 dBm of output power, the ratio of power in the new frequencies and the signal is less than -30 dB. This demonstrates that cross talk is acceptable for low gain and output power applications of these devices such as frequency conversion. We present simple scaling relationships for the power in the new undesirable frequencies that can be used to help design optical parametric amplifiers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photon. Technol. Lett. 13, 194–196 (2001).
    [CrossRef]
  2. M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Electron. Lett. 38, 85–86 (2002).
    [CrossRef]
  3. M. Islam and B. Boyraz, “Fiber parametric amplifiers for wavelength conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002).
    [CrossRef]
  4. J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S. Matsushita, H. Tobioka, S. Namiki, and T. Yagi, “Dispersion slope controlled HNL-DSF with high γ of 25 W−1 km−1 and band conversion experiment using this fiber,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, September 8–12, 2002, paper PD1.5.
  5. R. McKerracher, J. Blows, and M. C. deSterke, “Wavelength conversion bandwidth in fiber based optical parametric amplifiers,” Opt. Express 11, 1002–1007 (2003).
    [CrossRef] [PubMed]
  6. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
    [CrossRef]
  7. M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, “92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier,” Opt. Lett. 26, 620–622 (2001).
    [CrossRef]
  8. J. M. C. Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-band efficient two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 15, 1528–1530 (2003).
    [CrossRef]
  9. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
    [CrossRef]
  10. S. Radic, C. J. McKinstrie, and R. M. Jopsen, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15, 957–959 (2003).
    [CrossRef]
  11. Y. Li, K. Croussore, K. Cheolhwan, and G. Li, “All-optical 2R regeneration using data-pumped fibre parametric amplification,” Electron. Lett. 39, 1263–1264 (2003).
    [CrossRef]
  12. J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 13, 732–734 (2001).
    [CrossRef]
  13. T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
    [CrossRef]
  14. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
    [CrossRef]
  15. M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20, 469–476 (2002).
    [CrossRef]
  16. J. L. Blows and S. E. French, “Low noise figure optical parametric amplifier with a continuous-wave frequency-modulated pump,” Opt. Lett. 27, 491–493 (2002).
    [CrossRef]
  17. M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, “200-nm-bandwidth fiber optical amplifier combining parametric and raman gain,” J. Lightwave Technol. 19, 977–981 (2001).
    [CrossRef]
  18. S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
    [CrossRef]
  19. T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett. 15, 1573–1575 (2003).
    [CrossRef]
  20. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
    [CrossRef]
  21. M. Karlson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15, 2269–2275 (1988).
    [CrossRef]
  22. J. M. Jopsen, “Polarization insensitive optical four photon mixer with orthogonally polarized pumps,” US Patent 5, 386, 314 (January 31, 1995).
  23. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San-Diego, Calif., 1995).
  24. I. P. Kaminow and T. L. Kock, eds., Optical Fibre Telecommunication IIIA (Academic, San Diego, Calif., 1997).
  25. K. Krastev and J. Rathman, “Cross talk in fibre parametric amplifier,” in Proceedings 27th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 3, pp. 378–379.
  26. J. L. Blows, “Cross talk in a fiber parametric wavelength converter,” in Optical Fiber Communications Conference, Vol. 86 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), pp. 565–566.
  27. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump wave,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2003).
    [CrossRef]
  28. K. Inoue, “Polarization effect on four-wave mixing efficiency in a single mode fiber,” IEEE J. Quantum Electron. QE-28, 883–894 (1992).
    [CrossRef]
  29. S. Radic, C. McKinstrie, and R. Jopson, “Polarization independent parametric gain in amplifiers with orthogonally multiplexed optical pumps,” in Optical Fiber Communications Conference, Vol. 86 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), pp. 508–509.

2003 (8)

R. McKerracher, J. Blows, and M. C. deSterke, “Wavelength conversion bandwidth in fiber based optical parametric amplifiers,” Opt. Express 11, 1002–1007 (2003).
[CrossRef] [PubMed]

J. M. C. Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-band efficient two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 15, 1528–1530 (2003).
[CrossRef]

S. Radic, C. J. McKinstrie, and R. M. Jopsen, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15, 957–959 (2003).
[CrossRef]

Y. Li, K. Croussore, K. Cheolhwan, and G. Li, “All-optical 2R regeneration using data-pumped fibre parametric amplification,” Electron. Lett. 39, 1263–1264 (2003).
[CrossRef]

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett. 15, 1573–1575 (2003).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump wave,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2003).
[CrossRef]

2002 (7)

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[CrossRef]

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20, 469–476 (2002).
[CrossRef]

J. L. Blows and S. E. French, “Low noise figure optical parametric amplifier with a continuous-wave frequency-modulated pump,” Opt. Lett. 27, 491–493 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[CrossRef]

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Electron. Lett. 38, 85–86 (2002).
[CrossRef]

M. Islam and B. Boyraz, “Fiber parametric amplifiers for wavelength conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002).
[CrossRef]

2001 (4)

M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, “92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier,” Opt. Lett. 26, 620–622 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 13, 732–734 (2001).
[CrossRef]

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, “200-nm-bandwidth fiber optical amplifier combining parametric and raman gain,” J. Lightwave Technol. 19, 977–981 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photon. Technol. Lett. 13, 194–196 (2001).
[CrossRef]

2000 (1)

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

1992 (1)

K. Inoue, “Polarization effect on four-wave mixing efficiency in a single mode fiber,” IEEE J. Quantum Electron. QE-28, 883–894 (1992).
[CrossRef]

1988 (1)

Akasaka, Y.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Electron. Lett. 38, 85–86 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 13, 732–734 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photon. Technol. Lett. 13, 194–196 (2001).
[CrossRef]

Arai, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

Aso, O.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

Blows, J.

Blows, J. L.

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

J. L. Blows and S. E. French, “Low noise figure optical parametric amplifier with a continuous-wave frequency-modulated pump,” Opt. Lett. 27, 491–493 (2002).
[CrossRef]

Boggio, J. M. C.

J. M. C. Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-band efficient two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 15, 1528–1530 (2003).
[CrossRef]

Bolger, J. A.

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

Boyraz, B.

M. Islam and B. Boyraz, “Fiber parametric amplifiers for wavelength conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002).
[CrossRef]

Brar, K.

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

Centanni, J. C.

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

Cheolhwan, K.

Y. Li, K. Croussore, K. Cheolhwan, and G. Li, “All-optical 2R regeneration using data-pumped fibre parametric amplification,” Electron. Lett. 39, 1263–1264 (2003).
[CrossRef]

Chraplyvy, A. R.

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump wave,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2003).
[CrossRef]

Croussore, K.

Y. Li, K. Croussore, K. Cheolhwan, and G. Li, “All-optical 2R regeneration using data-pumped fibre parametric amplification,” Electron. Lett. 39, 1263–1264 (2003).
[CrossRef]

Dainese, P.

J. M. C. Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-band efficient two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 15, 1528–1530 (2003).
[CrossRef]

deSterke, M. C.

Eggleton, B. J.

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

Fragnito, H. L.

J. M. C. Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-band efficient two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 15, 1528–1530 (2003).
[CrossRef]

French, S. E.

Hambley, P.

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

Hansryd, J.

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Electron. Lett. 38, 85–86 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 13, 732–734 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photon. Technol. Lett. 13, 194–196 (2001).
[CrossRef]

Headley, C.

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

Hedekvist, P.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Ho, M. C.

Hu, P.

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

Inoue, K.

K. Inoue, “Polarization effect on four-wave mixing efficiency in a single mode fiber,” IEEE J. Quantum Electron. QE-28, 883–894 (1992).
[CrossRef]

Islam, M.

M. Islam and B. Boyraz, “Fiber parametric amplifiers for wavelength conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002).
[CrossRef]

Jopsen, R. M.

S. Radic, C. J. McKinstrie, and R. M. Jopsen, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15, 957–959 (2003).
[CrossRef]

Jopson, R. M.

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

Jorgensen, C. G.

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

Karlson, M.

Karlsson, F.

J. M. C. Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-band efficient two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 15, 1528–1530 (2003).
[CrossRef]

Kazovsky, L. G.

Kikuchi, K.

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett. 15, 1573–1575 (2003).
[CrossRef]

Knudsen, S. N.

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Electron. Lett. 38, 85–86 (2002).
[CrossRef]

Li, G.

Y. Li, K. Croussore, K. Cheolhwan, and G. Li, “All-optical 2R regeneration using data-pumped fibre parametric amplification,” Electron. Lett. 39, 1263–1264 (2003).
[CrossRef]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Li, Y.

Y. Li, K. Croussore, K. Cheolhwan, and G. Li, “All-optical 2R regeneration using data-pumped fibre parametric amplification,” Electron. Lett. 39, 1263–1264 (2003).
[CrossRef]

Marhic, M.

Marhic, M. E.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[CrossRef]

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” J. Lightwave Technol. 20, 469–476 (2002).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, “92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier,” Opt. Lett. 26, 620–622 (2001).
[CrossRef]

McKerracher, R.

McKinstrie, C. J.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump wave,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2003).
[CrossRef]

S. Radic, C. J. McKinstrie, and R. M. Jopsen, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15, 957–959 (2003).
[CrossRef]

McKinstrie, J.

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

Mok, J. T.

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

Namiki, S.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

Ng, T. T.

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

Radic, S.

S. Radic, C. J. McKinstrie, and R. M. Jopsen, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15, 957–959 (2003).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump wave,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2003).
[CrossRef]

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

Suzuki, Y.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

Tadakuma, M.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

Tanemura, T.

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett. 15, 1573–1575 (2003).
[CrossRef]

Uesaka, K.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[CrossRef]

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, “200-nm-bandwidth fiber optical amplifier combining parametric and raman gain,” J. Lightwave Technol. 19, 977–981 (2001).
[CrossRef]

Westlund, M.

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Electron. Lett. 38, 85–86 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, “92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier,” Opt. Lett. 26, 620–622 (2001).
[CrossRef]

Wong, K. Y. K.

Yagi, T.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

Electron. Lett. (3)

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, “Transparent wavelength conversion in fibre with 24 nm pump tuning range,” Electron. Lett. 38, 85–86 (2002).
[CrossRef]

Y. Li, K. Croussore, K. Cheolhwan, and G. Li, “All-optical 2R regeneration using data-pumped fibre parametric amplification,” Electron. Lett. 39, 1263–1264 (2003).
[CrossRef]

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband four-wave mixing in short optical fibres,” Electron. Lett. 36, 709–711 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Inoue, “Polarization effect on four-wave mixing efficiency in a single mode fiber,” IEEE J. Quantum Electron. QE-28, 883–894 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump wave,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2003).
[CrossRef]

M. Islam and B. Boyraz, “Fiber parametric amplifiers for wavelength conversion,” IEEE J. Sel. Top. Quantum Electron. 8, 527–537 (2002).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8, 560–568 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

S. Radic, C. J. McKinstrie, and R. M. Jopsen, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15, 957–959 (2003).
[CrossRef]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photon. Technol. Lett. 13, 194–196 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 13, 732–734 (2001).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 14, 911–913 (2002).
[CrossRef]

J. M. C. Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-band efficient two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 15, 1528–1530 (2003).
[CrossRef]

S. Radic, J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric amplifiers,” IEEE Photon. Technol. Lett. 15, 673–675 (2003).
[CrossRef]

T. Tanemura and K. Kikuchi, “Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening,” IEEE Photon. Technol. Lett. 15, 1573–1575 (2003).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

T. T. Ng, J. L. Blows, J. T. Mok, P. Hu, J. A. Bolger, P. Hambley, and B. J. Eggleton, “Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,” Opt. Express 23, 3122–3127 (2003).
[CrossRef]

R. McKerracher, J. Blows, and M. C. deSterke, “Wavelength conversion bandwidth in fiber based optical parametric amplifiers,” Opt. Express 11, 1002–1007 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (7)

J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S. Matsushita, H. Tobioka, S. Namiki, and T. Yagi, “Dispersion slope controlled HNL-DSF with high γ of 25 W−1 km−1 and band conversion experiment using this fiber,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, September 8–12, 2002, paper PD1.5.

J. M. Jopsen, “Polarization insensitive optical four photon mixer with orthogonally polarized pumps,” US Patent 5, 386, 314 (January 31, 1995).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San-Diego, Calif., 1995).

I. P. Kaminow and T. L. Kock, eds., Optical Fibre Telecommunication IIIA (Academic, San Diego, Calif., 1997).

K. Krastev and J. Rathman, “Cross talk in fibre parametric amplifier,” in Proceedings 27th European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 3, pp. 378–379.

J. L. Blows, “Cross talk in a fiber parametric wavelength converter,” in Optical Fiber Communications Conference, Vol. 86 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), pp. 565–566.

S. Radic, C. McKinstrie, and R. Jopson, “Polarization independent parametric gain in amplifiers with orthogonally multiplexed optical pumps,” in Optical Fiber Communications Conference, Vol. 86 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2003), pp. 508–509.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical OSA trace for the OPA. Two parallel linearly polarized pumps and one signal at 1547 nm are launched into the fiber. The total pump power is 0.9 W. The peaks marked X1, X1, X2, and X2 are new unwanted frequencies.

Fig. 2
Fig. 2

Experimental setup for the optical parametric amplifier with two pumps.

Fig. 3
Fig. 3

Signal-gain spectra for a two-pump OPA with the pumps of the same and orthogonal linear polarizations.

Fig. 4
Fig. 4

For one launched signal, the power in X1 and ΔX versus the signal gain, where the signal gain was varied by adjusting signal polarization angle. Inset: For one launched signal, the signal gain versus signal state of polarization (θ). The signal and pump waves have the same parallel polarization for θ=0.

Fig. 5
Fig. 5

For one launched signal, the power in X1 and ΔX versus the launched signal input power.

Fig. 6
Fig. 6

Typical OSA trace for two-pump OPA with two signals at 1547 nm and 1547.8 nm.

Fig. 7
Fig. 7

(a) For two launched signals, the powers in X1 through X4 and ΔX against signal input power, and (b) the powers in X1 through X4 and ΔX versus the signal gain.

Tables (1)

Tables Icon

Table 1 Dependence of the New Frequency Powers and Worst-Case Cross Talk on Launched Signal Power (Ps) and Gain

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ωP1+ωP2=ωS+ωI,
2ωS=ωP1+ωX1,
2ω1=ωP1+ωX1
2ω1=ωP2+ωX2,
2ωS=ωP2+ωX2.
2ωS1=ωP1+ωX1,
2ωS2=ωP1+ωX2,
ωS1+ωS2=ωP1+ωX3,
ωS1+ωI2=ωP1+ωX4.
dAX1dz=iγ[(2|AX2|2+2|AP1|2+2|AX2|2+2|AS|2+2|AI|2+|AX1|2+2|AP2|2+2|AX1|2)×AX1+AS2AP1*exp[-iz(kP1+kX1-2kS)]+2AX2AP1*AP2 exp[-iz(kP1+kX1-kX2-kP2)]+2AX2*ASAI exp[-iz(kX2+kX1-kS-kI)]+2AP1AX2*AP2 exp[-iz(kX2+kX1-kP1-kP2)]×2AX2AX2*AX1 exp[-iz(kX2+kX1-kX2-kX1)]+2ASAI*AP2 exp[-iz(kI+kX1-kS-kP2)]+AP22AX1*exp[-iz(kX1+kX1-2kP2)]],

Metrics