Abstract

We present a continuation of a previous study [J. Opt. Soc. Am. B 20, 1838 (2003)] that focused on quantifying the spectral dependence of the refractive index and extinction coefficient of perfluorocyclobutyl (PFCB)-based polymers. The theoretical loss spectrum of PFCB-based polymers is computed and compared with measured values on thick films over the spectral range covering the visible and near-infrared telecommunications bands. The results suggest that PFCB-based polymers provide for intrinsic attenuations below 10 dB/km in the visible and from 1.3 to 1.6 µm. The results are used to predict directions for the use of PFCB in optical fibers, planar lightwave circuits, and optical amplifiers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
    [CrossRef]
  2. H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
    [CrossRef]
  3. H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339–1365 (2002).
    [CrossRef]
  4. H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
    [CrossRef]
  5. W. Groh, “Overtone absorption in macromolecules for poly-mer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
    [CrossRef]
  6. L. Pauling and E. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935), p. 274.
  7. B. Timm and R. Mecke, “Quantitative absorptionsmessungen an den CH-oberschwingungen einfacher kohlenwasserstoffe. I. Die halogenderivate des methans, äthans, und äthylens,” Z. Phys. 98, 363–381 (1936).
    [CrossRef]
  8. J. Senior, Optical Fiber Communications (Prentice-Hall, New York, 1992).
  9. R. Norwood, R. Gao, J. Sharma, and C. Teng, “Sources of loss in single-mode polymer optical waveguides,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE 4439, 19–28 (2001).
    [CrossRef]
  10. J. Ballato, D. Smith, and S. Foulger, “Optical properties of perfluorocyclobutyl polymers,” J. Opt. Soc. Am. B 20, 1838–1843 (2003).
    [CrossRef]
  11. Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
    [CrossRef]
  12. Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for polymer optical fibers,” J. Polym. Sci., Part B Polym. Phys. 30, 879–885 (1992).
    [CrossRef]
  13. M. Lines, “Theoretical limits of low optic loss in multicomponent halide glass materials,” J. Non-Cryst. Solids 103, 265–278 (1988).
    [CrossRef]
  14. G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
    [CrossRef]
  15. G. Nordin, University of Alabama in Huntsville (personal communication, 2003).
  16. K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [CrossRef]
  17. K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
    [CrossRef]
  18. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
    [CrossRef]
  19. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
    [CrossRef]
  20. T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
    [CrossRef]
  21. A. Kaminow, Crystalline Lasers: Physical Process and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  22. J. Ballato, J. Lewis, and P. Holloway, “Display applications of rare-earth-doped materials,” MRS Bull. 24, 51–56 (1999).
  23. C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
    [CrossRef]
  24. C. Laine, W. Lowdermilk, and M. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
    [CrossRef]

2003 (1)

2002 (2)

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339–1365 (2002).
[CrossRef]

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

2001 (1)

R. Norwood, R. Gao, J. Sharma, and C. Teng, “Sources of loss in single-mode polymer optical waveguides,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

2000 (4)

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

1999 (1)

J. Ballato, J. Lewis, and P. Holloway, “Display applications of rare-earth-doped materials,” MRS Bull. 24, 51–56 (1999).

1998 (1)

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

1997 (2)

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

1994 (1)

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

1992 (2)

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for polymer optical fibers,” J. Polym. Sci., Part B Polym. Phys. 30, 879–885 (1992).
[CrossRef]

1988 (2)

M. Lines, “Theoretical limits of low optic loss in multicomponent halide glass materials,” J. Non-Cryst. Solids 103, 265–278 (1988).
[CrossRef]

W. Groh, “Overtone absorption in macromolecules for poly-mer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
[CrossRef]

1977 (1)

C. Laine, W. Lowdermilk, and M. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

1969 (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

1936 (1)

B. Timm and R. Mecke, “Quantitative absorptionsmessungen an den CH-oberschwingungen einfacher kohlenwasserstoffe. I. Die halogenderivate des methans, äthans, und äthylens,” Z. Phys. 98, 363–381 (1936).
[CrossRef]

Achen, A.

G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Agarwal, A.

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

Babb, D.

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Ballato, J.

J. Ballato, D. Smith, and S. Foulger, “Optical properties of perfluorocyclobutyl polymers,” J. Opt. Soc. Am. B 20, 1838–1843 (2003).
[CrossRef]

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

J. Ballato, J. Lewis, and P. Holloway, “Display applications of rare-earth-doped materials,” MRS Bull. 24, 51–56 (1999).

Beuhler, A.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Cahill, P.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Cheatham, C.

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Chen, B.

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Chen, S.

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

Dalton, L.

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339–1365 (2002).
[CrossRef]

Deguzman, P.

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Fischbeck, G.

G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Foresi, J.

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Foulger, S.

J. Ballato, D. Smith, and S. Foulger, “Optical properties of perfluorocyclobutyl polymers,” J. Opt. Soc. Am. B 20, 1838–1843 (2003).
[CrossRef]

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Gao, R.

R. Norwood, R. Gao, J. Sharma, and C. Teng, “Sources of loss in single-mode polymer optical waveguides,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Groh, W.

W. Groh, “Overtone absorption in macromolecules for poly-mer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
[CrossRef]

Herguth, P.

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Holloway, P.

J. Ballato, J. Lewis, and P. Holloway, “Display applications of rare-earth-doped materials,” MRS Bull. 24, 51–56 (1999).

Jen, A.

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339–1365 (2002).
[CrossRef]

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Kimerling, L.

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

Kosc, T.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Kostrzewa, C.

G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Kowalczyk, T.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Kumar, S.

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

Laane, J.

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Ladouceur, F.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

Laine, C.

C. Laine, W. Lowdermilk, and M. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Lee, K.

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

Lee, S.-N.

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Lewis, J.

J. Ballato, J. Lewis, and P. Holloway, “Display applications of rare-earth-doped materials,” MRS Bull. 24, 51–56 (1999).

Lim, D.

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

Lines, M.

M. Lines, “Theoretical limits of low optic loss in multicomponent halide glass materials,” J. Non-Cryst. Solids 103, 265–278 (1988).
[CrossRef]

Lowdermilk, W.

C. Laine, W. Lowdermilk, and M. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Luan, H.-C.

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Ma, H.

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339–1365 (2002).
[CrossRef]

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Marcuse, D.

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

Mecke, R.

B. Timm and R. Mecke, “Quantitative absorptionsmessungen an den CH-oberschwingungen einfacher kohlenwasserstoffe. I. Die halogenderivate des methans, äthans, und äthylens,” Z. Phys. 98, 363–381 (1936).
[CrossRef]

Meinhardt, M.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Moosburger, R.

G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Nordin, G.

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Norwood, R.

R. Norwood, R. Gao, J. Sharma, and C. Teng, “Sources of loss in single-mode polymer optical waveguides,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Ohara, S.

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for polymer optical fibers,” J. Polym. Sci., Part B Polym. Phys. 30, 879–885 (1992).
[CrossRef]

Petermann, K.

G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

Seager, C.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Shah, H.

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Sharma, J.

R. Norwood, R. Gao, J. Sharma, and C. Teng, “Sources of loss in single-mode polymer optical waveguides,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Singer, K.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Smith, D.

J. Ballato, D. Smith, and S. Foulger, “Optical properties of perfluorocyclobutyl polymers,” J. Opt. Soc. Am. B 20, 1838–1843 (2003).
[CrossRef]

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Taketani, N.

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for polymer optical fibers,” J. Polym. Sci., Part B Polym. Phys. 30, 879–885 (1992).
[CrossRef]

Takezawa, Y.

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for polymer optical fibers,” J. Polym. Sci., Part B Polym. Phys. 30, 879–885 (1992).
[CrossRef]

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Tanno, S.

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for polymer optical fibers,” J. Polym. Sci., Part B Polym. Phys. 30, 879–885 (1992).
[CrossRef]

Teng, C.

R. Norwood, R. Gao, J. Sharma, and C. Teng, “Sources of loss in single-mode polymer optical waveguides,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Timm, B.

B. Timm and R. Mecke, “Quantitative absorptionsmessungen an den CH-oberschwingungen einfacher kohlenwasserstoffe. I. Die halogenderivate des methans, äthans, und äthylens,” Z. Phys. 98, 363–381 (1936).
[CrossRef]

Topping, C.

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

Wargowski, D.

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

Weber, M.

C. Laine, W. Lowdermilk, and M. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Wu, J.

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (2)

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339–1365 (2002).
[CrossRef]

D. Smith, S. Chen, S. Kumar, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl polymers for microphotonics,” Adv. Mater. (Weinheim, Ger.) 14, 1585–1589 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, “Erratum: ‘Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model, ’ ” Appl. Phys. Lett. 77, 2258 (2000).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

Chem. Mater. (1)

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Electron. Lett. (1)

G. Fischbeck, R. Moosburger, C. Kostrzewa, A. Achen, and K. Petermann, “Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range,” Electron. Lett. 33, 518–519 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

J. Appl. Phys. (1)

T. Kowalczyk, T. Kosc, K. Singer, P. Cahill, C. Seager, M. Meinhardt, A. Beuhler, and D. Wargowski, “Loss mechanisms in polyimide waveguides,” J. Appl. Phys. 76, 2505–2508 (1994).
[CrossRef]

J. Appl. Polym. Sci. (1)

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992).
[CrossRef]

J. Lightwave Technol. (1)

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Lines, “Theoretical limits of low optic loss in multicomponent halide glass materials,” J. Non-Cryst. Solids 103, 265–278 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Polym. Sci., Part B Polym. Phys. (1)

Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for polymer optical fibers,” J. Polym. Sci., Part B Polym. Phys. 30, 879–885 (1992).
[CrossRef]

Makromol. Chem. (1)

W. Groh, “Overtone absorption in macromolecules for poly-mer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
[CrossRef]

MRS Bull. (1)

J. Ballato, J. Lewis, and P. Holloway, “Display applications of rare-earth-doped materials,” MRS Bull. 24, 51–56 (1999).

Phys. Rev. B (1)

C. Laine, W. Lowdermilk, and M. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Polym. Int. (1)

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Proc. SPIE (1)

R. Norwood, R. Gao, J. Sharma, and C. Teng, “Sources of loss in single-mode polymer optical waveguides,” in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices, R. A. Norwood, ed., Proc. SPIE 4439, 19–28 (2001).
[CrossRef]

Z. Phys. (1)

B. Timm and R. Mecke, “Quantitative absorptionsmessungen an den CH-oberschwingungen einfacher kohlenwasserstoffe. I. Die halogenderivate des methans, äthans, und äthylens,” Z. Phys. 98, 363–381 (1936).
[CrossRef]

Other (4)

J. Senior, Optical Fiber Communications (Prentice-Hall, New York, 1992).

L. Pauling and E. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935), p. 274.

A. Kaminow, Crystalline Lasers: Physical Process and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).

G. Nordin, University of Alabama in Huntsville (personal communication, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Top) Schematic representation of the formation of PFCB polymers by the thermally induced (Δ) dimerization of trifluorovinylaryl-ethers. (Bottom) Specification of aryl substituents used in this paper: TVE, trifluorovinylether; 6F, hexafluoroisopropylidene.

Fig. 2
Fig. 2

Attenuation as a function of wavelength due to harmonic vibrations, νx (x=110 computed in the text) of CH, CO, and CF bonds making up TVE and 6F PFCB polymers.

Fig. 3
Fig. 3

Computed attenuation as a function of wavelength due to Rayleigh scattering for TVE, Teflon AF, and pure silica [calculated with Eq. (11) and Table 2 data].

Fig. 4
Fig. 4

Measured attenuation versus wavelength for TVE PFCB.

Fig. 5
Fig. 5

Comparison of computed versus measured attenuations of PFCB.

Fig. 6
Fig. 6

Measured (heavy curve) and computed (circles) attenuations in the (a) ultraviolet, (b) infrared, and (c) resulting from Rayleigh scattering.

Fig. 7
Fig. 7

Theoretical attenuation for PFCB calculated with computed electronic, multiphonon, and Rayleigh scattering spectral attenuation curves.

Fig. 8
Fig. 8

(a) Multiphonon curve fits and (b) experimental data have been used to compute (c) the theoretical attenuation for PFCB.

Fig. 9
Fig. 9

Comparison of theoretical attenuations [(a) and (b) from Fig. 8(c), left ordinate] to measured attenuation (right ordinate) with peak designations.

Fig. 10
Fig. 10

Comparison of measured attenuation of PFCB (circles, right ordinate) with theoretical attenuation (squares, left ordinate) computed as a summation of the envelope function and the harmonic absorptions. Harmonic absorptions computed using a pure Lorenztian line shape centered at wavelengths and of magnitude given by Fig. 2 data and with a 50-nm FWHM linewidth. Peak designations also noted.

Tables (2)

Tables Icon

Table 1 Vibrational Frequencies, Harmonics, and Transition Momentsa

Tables Icon

Table 2 Property Values Used for Computation of Rayleigh Scattering Component to Attenuationa

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

M(ν)=ν0(ν+12)-ν0(ν+12)2,
νν=ν0ν-ν0ν(1+ν).
νν=ν1ν-ν1ν(1+ν)1-2,
A(B)=1ν(B-2ν-1)B-2ν,
!Γ(+1).
!Γ(+1)(2π)exp(-)×()-(1/2)(for  large);
A(B)=1ν(B-2ν-1)Γ(B-2+1)Γ(ν+1)Γ(B-2-ν+1),
A(B)=1ν(B-2ν-1)×(2π)exp[-(B-2+1)](B-2+1)(B-2+1)-1/2{(2π)exp[-(ν+1)](ν+1)(ν+1)-1/2}{(2π)exp[-(B-2-ν+1)](B-2-ν+1)(B-2-ν+1)-1/2}.
ln(!)12 ln(2)+12 ln(π)-+ ln()-12 ln().
 P(ν)=ln(2π)exp[-(B-2+1)](B-2+1)(B-2+1)-1/2{(2π)exp[-(ν+1)](ν+1)(ν+1)-1/2}{(2π)exp[-(B-2-ν+1)](B-2-ν+1)(B-2-ν+1)-1/2}=-ln(2)2-ln(π)2+(B-2+1)ln(B-2+1)+ln(B-2+1)2-(ν+1)ln(ν+1)+ln(ν+1)2-(B-2-ν+1)ln(B-2-ν+1)+ln(B-2-ν+1)2-(B-2+1)+(ν+1)+(B-2-ν+1),
A(B)={1/ν[B-(2ν)-1]}exp[P(ν)].
γR=8π33λ4n8p2β(kTf),
Δn=Cσ,
C=2π45kT(n2+2)2n(ϕ1-ϕ2)
σ=T1T2E1-νp[αs(T)-αf (T)]dT.

Metrics