Abstract

Yb3+/Er3+-codoped Na2OAl2O3GeO2PbOPbF2 glasses that are suitable for use in fiber lasers, amplifiers, and waveguide devices have been fabricated and characterized. The density, refractive indices, optical absorptions, Judd–Ofelt parameters, and spontaneous-transition probabilities of the glasses have been measured and calculated. Intense and broad 1.53-µm infrared fluorescence and visible upconversion luminescence were observed under 976-nm diode laser excitation. For the 1.53-µm emission band, the full widths at the half-maximum increase and the peak wavelengths are blueshifted with an increase of PbF2. The stimulated-emission cross sections were calculated from the measured-absorption cross section according to the McCumber theory. The monotonically reduced emission cross section arises from the decreased refractive indices of glasses and the increased linewidth of the infrared fluorescence spectrum. For the upconversion emissions centered at 524, 547, and 660 nm, the emission intensity changes remarkably with PbF2 contents from 0 to 15 mol.%. The quadratic dependence of the green and red emissions on excitation power indicates that a two-photon absorption process occurs under the 976-nm excitation. The relatively long lifetimes of the Er3+ 4S3/2 and  4F9/2 levels for the NAGF3 glass gives rise to a much more intense upconversion emission.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription