Abstract

Three types of quasi-stadium laser diodes, which have confocal, concentric, and geometrically unstable end mirrors, were fabricated by a reactive-ion-etching technique. It is shown that the experimental results on the lasing characteristics of these lasers excellently correspond to the theoretical results by the extended Fox–Li mode calculation method. The morphological effects on lasing modes are discussed from the viewpoint of ray-wave correspondence.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990).
  2. E. J. Heller, “,” Phys. Rev. Lett. 53, 1515–1518 (1984).
    [CrossRef]
  3. E. J. Heller and S. Tomsovic, “Postmodern quantum mechanics,” Phys. Today 46, 38–46 (1993).
    [CrossRef]
  4. S. W. McDonald and A. N. Kaufman, “Wave chaos in thestadium: statistical properties of short-wave solutions of the Helmholts equation,” Phys. Rev. A 37, 3067–3086 (1988).
    [CrossRef] [PubMed]
  5. T. Harayama, P. Davis, and K. S. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
    [CrossRef] [PubMed]
  6. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature (London) 385, 45–47 (1997).
    [CrossRef]
  7. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
    [CrossRef] [PubMed]
  8. S. Ando, N. Kobayashi, and H. Ando, “Hexagonal-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part 2 34, L4–L6 (1995).
    [CrossRef]
  9. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  10. A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
    [CrossRef]
  11. T. Harayama, P. Davis, and K. S. Ikeda, “Nonlinear whispering gallery modes,” Phys. Rev. Lett. 82, 3803–3806 (1999).
    [CrossRef]
  12. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  13. S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
    [CrossRef] [PubMed]
  14. N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
    [CrossRef]
  15. C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov–Arnold–Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,” Opt. Lett. 27, 824–826 (2002).
    [CrossRef]
  16. T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207 (2003).
    [CrossRef]
  17. T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Exp. 2, 21–28 (1998), http://www.opticsexpress.org.
    [CrossRef]
  18. T. Fukushima, “Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes,” J. Lightwave Technol. 18, 2208–2216 (2000).
    [CrossRef]
  19. L. A. Bunimovich, “On the ergodic properties of nowhere dispersing billiards,” Commun. Math. Phys. 65, 295–312 (1979).
    [CrossRef]
  20. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  21. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
    [CrossRef]
  22. S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
    [CrossRef]
  23. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
    [CrossRef]
  24. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
    [CrossRef] [PubMed]

2003 (3)

T. Harayama, P. Davis, and K. S. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207 (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
[CrossRef] [PubMed]

2002 (4)

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[CrossRef]

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
[CrossRef]

C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov–Arnold–Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,” Opt. Lett. 27, 824–826 (2002).
[CrossRef]

2000 (1)

1999 (1)

T. Harayama, P. Davis, and K. S. Ikeda, “Nonlinear whispering gallery modes,” Phys. Rev. Lett. 82, 3803–3806 (1999).
[CrossRef]

1998 (2)

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Exp. 2, 21–28 (1998), http://www.opticsexpress.org.
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

1997 (1)

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature (London) 385, 45–47 (1997).
[CrossRef]

1995 (2)

S. Ando, N. Kobayashi, and H. Ando, “Hexagonal-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part 2 34, L4–L6 (1995).
[CrossRef]

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

1993 (2)

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

E. J. Heller and S. Tomsovic, “Postmodern quantum mechanics,” Phys. Today 46, 38–46 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

1988 (1)

S. W. McDonald and A. N. Kaufman, “Wave chaos in thestadium: statistical properties of short-wave solutions of the Helmholts equation,” Phys. Rev. A 37, 3067–3086 (1988).
[CrossRef] [PubMed]

1984 (1)

E. J. Heller, “,” Phys. Rev. Lett. 53, 1515–1518 (1984).
[CrossRef]

1979 (1)

L. A. Bunimovich, “On the ergodic properties of nowhere dispersing billiards,” Commun. Math. Phys. 65, 295–312 (1979).
[CrossRef]

1961 (1)

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Aida, T.

An, K.

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

Ando, H.

S. Ando, N. Kobayashi, and H. Ando, “Hexagonal-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part 2 34, L4–L6 (1995).
[CrossRef]

Ando, S.

S. Ando, N. Kobayashi, and H. Ando, “Hexagonal-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part 2 34, L4–L6 (1995).
[CrossRef]

Baillargeon, J. N.

Biellak, S. A.

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Exp. 2, 21–28 (1998), http://www.opticsexpress.org.
[CrossRef]

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Bunimovich, L. A.

L. A. Bunimovich, “On the ergodic properties of nowhere dispersing billiards,” Commun. Math. Phys. 65, 295–312 (1979).
[CrossRef]

Capasso, F.

C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov–Arnold–Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,” Opt. Lett. 27, 824–826 (2002).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

Chang, J.-S.

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

Chang, R. K.

N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
[CrossRef]

Cho, A. Y.

C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov–Arnold–Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,” Opt. Lett. 27, 824–826 (2002).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

Davis, P.

T. Harayama, P. Davis, and K. S. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207 (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
[CrossRef] [PubMed]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[CrossRef]

T. Harayama, P. Davis, and K. S. Ikeda, “Nonlinear whispering gallery modes,” Phys. Rev. Lett. 82, 3803–3806 (1999).
[CrossRef]

Faist, J.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

Fox, A. G.

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Fukushima, T.

Gmachl, C.

C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov–Arnold–Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,” Opt. Lett. 27, 824–826 (2002).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

Harayama, T.

T. Harayama, P. Davis, and K. S. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207 (2003).
[CrossRef]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Quasi-stadium laser diodes with an unstable resonator condition,” Opt. Lett. 28, 408–410 (2003).
[CrossRef] [PubMed]

T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27, 1430–1432 (2002).
[CrossRef]

T. Harayama, P. Davis, and K. S. Ikeda, “Nonlinear whispering gallery modes,” Phys. Rev. Lett. 82, 3803–3806 (1999).
[CrossRef]

Heller, E. J.

E. J. Heller and S. Tomsovic, “Postmodern quantum mechanics,” Phys. Today 46, 38–46 (1993).
[CrossRef]

E. J. Heller, “,” Phys. Rev. Lett. 53, 1515–1518 (1984).
[CrossRef]

Hobson, W. S.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

Ikeda, K. S.

T. Harayama, P. Davis, and K. S. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

T. Harayama, P. Davis, and K. S. Ikeda, “Nonlinear whispering gallery modes,” Phys. Rev. Lett. 82, 3803–3806 (1999).
[CrossRef]

Kaufman, A. N.

S. W. McDonald and A. N. Kaufman, “Wave chaos in thestadium: statistical properties of short-wave solutions of the Helmholts equation,” Phys. Rev. A 37, 3067–3086 (1988).
[CrossRef] [PubMed]

Kim, S. W.

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

Kobayashi, N.

S. Ando, N. Kobayashi, and H. Ando, “Hexagonal-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part 2 34, L4–L6 (1995).
[CrossRef]

Lee, J.-H.

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

Lee, S.-B.

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

Levi, A. F. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Li, T.

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

McCall, S. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

McDonald, S. W.

S. W. McDonald and A. N. Kaufman, “Wave chaos in thestadium: statistical properties of short-wave solutions of the Helmholts equation,” Phys. Rev. A 37, 3067–3086 (1988).
[CrossRef] [PubMed]

Miyasaka, T.

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207 (2003).
[CrossRef]

Moon, H.-J.

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

Narimanov, E. E.

C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov–Arnold–Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,” Opt. Lett. 27, 824–826 (2002).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

Nishimura, T.

Nöckel, J. U.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature (London) 385, 45–47 (1997).
[CrossRef]

Pearton, S. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Rex, N. B.

N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
[CrossRef]

Schwefel, H. G. L.

N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
[CrossRef]

Siegman, A. E.

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Exp. 2, 21–28 (1998), http://www.opticsexpress.org.
[CrossRef]

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Sivco, D. L.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

Slusher, R. E.

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Stone, A. D.

N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature (London) 385, 45–47 (1997).
[CrossRef]

Sun, Y.

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Exp. 2, 21–28 (1998), http://www.opticsexpress.org.
[CrossRef]

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Tomsovic, S.

E. J. Heller and S. Tomsovic, “Postmodern quantum mechanics,” Phys. Today 46, 38–46 (1993).
[CrossRef]

Tureci, H. E.

N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
[CrossRef]

Vaccaro, P. O.

Wong, S. S.

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, “Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,” Appl. Phys. Lett. 62, 2021–2023 (1993).
[CrossRef]

Bell Syst. Tech. J. (1)

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
[CrossRef]

Commun. Math. Phys. (1)

L. A. Bunimovich, “On the ergodic properties of nowhere dispersing billiards,” Commun. Math. Phys. 65, 295–312 (1979).
[CrossRef]

J. Appl. Phys. (1)

S. A. Biellak, Y. Sun, S. S. Wong, and A. E. Siegman, “Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers,” J. Appl. Phys. 78, 4294–4296 (1995).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys., Part 2 (1)

S. Ando, N. Kobayashi, and H. Ando, “Hexagonal-facet laser with optical waveguides grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., Part 2 34, L4–L6 (1995).
[CrossRef]

Nature (London) (1)

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature (London) 385, 45–47 (1997).
[CrossRef]

Opt. Exp. (1)

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, “Beam propagation behavior in a quasi-stadium laser diode,” Opt. Exp. 2, 21–28 (1998), http://www.opticsexpress.org.
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

S. W. McDonald and A. N. Kaufman, “Wave chaos in thestadium: statistical properties of short-wave solutions of the Helmholts equation,” Phys. Rev. A 37, 3067–3086 (1988).
[CrossRef] [PubMed]

Phys. Rev. E (1)

T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207 (2003).
[CrossRef]

Phys. Rev. Lett. (5)

S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and K. An, “Observation of scarred modes in asymmetrically deformed microcylinder lasers,” Phys. Rev. Lett. 88, 033903 (2002).
[CrossRef] [PubMed]

N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing emission fromscarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, 094102 (2002).
[CrossRef]

T. Harayama, P. Davis, and K. S. Ikeda, “Nonlinear whispering gallery modes,” Phys. Rev. Lett. 82, 3803–3806 (1999).
[CrossRef]

T. Harayama, P. Davis, and K. S. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

E. J. Heller, “,” Phys. Rev. Lett. 53, 1515–1518 (1984).
[CrossRef]

Phys. Today (1)

E. J. Heller and S. Tomsovic, “Postmodern quantum mechanics,” Phys. Today 46, 38–46 (1993).
[CrossRef]

Science (1)

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
[CrossRef] [PubMed]

Other (3)

M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990).

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagram of the quasi-stadium laser diode and the closed periodic trajectories inside the resonator. GRIN–SCH–SQW, graded-index–separate-confinement-heterostructure–single-quantum-well.

Fig. 2
Fig. 2

Schematic diagram of the contact patterns used for (a) the confocal quasi-stadium laser diode, (b) the concentric quasi-stadium laser diode, (c) the unstable quasi-stadium laser diode.

Fig. 3
Fig. 3

Scanning electron microscope images of the etched facet and the quasi-stadium laser diode: (a) etched facet of a test wafer that was prepared for evaluation and (b) the fabricated concentric quasi-stadium laser diodes.

Fig. 4
Fig. 4

Light output power versus injection current characteristics and the lasing spectra in the case of 10-mW output power for (a) type A and (b) type B of the confocal quasi-stadium laser diodes.

Fig. 5
Fig. 5

Far-field patterns at 10-mW output power for (a) type A and (b) type B of the confocal quasi-stadium laser diodes.

Fig. 6
Fig. 6

Light output power versus injection current characteristics and the lasing spectra in the case of 10-mW output power for (a) type A and (b) type B of the concentric quasi-stadium laser diodes.

Fig. 7
Fig. 7

Far-field patterns at 10-mW output power for (a) type A and (b) type B of the concentric quasi-stadium laser diodes.

Fig. 8
Fig. 8

Light output power versus injection current characteristics and the lasing spectrum in the case of 10-mW output power for the unstable quasi-stadium laser diode.

Fig. 9
Fig. 9

Near- and far-field patterns of the beam output from the curved end mirror in the case of 10-mW output power. (a) Patterns at the distances of (from the top) 0, 20, 30, and 50 µm from the mirror; (b) far-field pattern.

Fig. 10
Fig. 10

Resonator eigenmodes in the confocal quasi-stadium resonator. Beam intensity patterns of (a) six lower-loss axis modes and (b) six lower-loss ring modes. The beam intensity patterns are aligned from the lowest-loss mode.

Fig. 11
Fig. 11

Far-field patterns calculated for the axis modes: (a) mode 0, (b) mode 4, (c) phase-locking state of modes 0 and 4.

Fig. 12
Fig. 12

Far-field patterns calculated for the ring modes: (a) mode 0, (b) mode 5, (c) phase-locking state of modes 0 and 5.

Fig. 13
Fig. 13

Resonator eigenmodes in the concentric quasi-stadium resonator. Beam intensity patterns of (a) three lower-loss axis modes and (b) four lower-loss ring modes. The beam intensity patterns are aligned from the lowest-loss mode.

Fig. 14
Fig. 14

Far-field patterns calculated for (a) lowest-loss axis mode and (b) lowest-loss ring mode.

Fig. 15
Fig. 15

Wavelength dependence of the power-coupling coefficient for three lower-loss resonator eigenmodes in the unstable quasi-stadium resonator.

Fig. 16
Fig. 16

Beam propagation behavior from the left curved end mirror to the right curved end mirror in the case of the lowest-loss resonator eigenmode. (a) Beam intensity pattern inside the resonator, (b) beam propagation behavior from the left curved end mirror without sidewall reflection, (c) magnification of beam intensity pattern near the focal point.

Fig. 17
Fig. 17

Calculated near- and far-field patterns of the beams’ output from the curved end mirror in the case of the lowest-loss resonator eigenmode. (a) Pattern at distances of (from the top) 0, 20, 30, and 50 µm from the mirror; (b) far-field pattern.

Tables (1)

Tables Icon

Table 1 Parameters of the Quasi-Stadium Resonators

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ=±sin-1neffW(L2+W2)1/2,
E˜r(r)=CK˜(r, r)E˜l(r)dr,
E˜n(r)=γ˜nE˜n(r),
Γ=|γ˜n|2.

Metrics