Abstract

The dispersion of femtosecond pulses in hollow fibers is discussed. The dispersion of the fundamental hybrid mode is small and approaches the material dispersion of the core-filling gas, as the core radius is increased. When multiple modes propagate, the modal dispersion causes considerable pulse spreading, which depends on the core radius. Pulse spreading due to modal dispersion in a straight fused-silica hollow fiber is measured experimentally and shown to agree well with the calculated value.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. J. Barty, W. White, W. Sibbett, and R. Trebino, “Introduction to the issue on ultrafast optics,” IEEE J. Sel. Top. Quantum Electron. 4, 157–158 (1998).
    [CrossRef]
  2. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
    [CrossRef] [PubMed]
  3. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [CrossRef]
  4. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
    [CrossRef]
  5. M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
    [CrossRef]
  6. D. Homoelle, A. L. Gaeta, V. Yanovsky, and G. Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27, 1646–1648 (2002).
    [CrossRef]
  7. M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, “Silver-coated hollow-glass waveguide for applications at 800 nm,” Appl. Opt. 41, 7031–7035 (2002).
    [CrossRef] [PubMed]
  8. M. Mohebbi and R. Fedosejevs, “High-efficiency optical compression of Ti:sapphire laser pulses at 800 nm using a silver-coated hollow fiber,” Appl. Phys. B 76, 345–350 (2003).
    [CrossRef]
  9. Y. Matsuura, M. Miyagi, K. Shihoyama, and M. Kawachi, “Delivery of femtosecond pulses by flexible hollow fibers,” J. Appl. Phys. 91, 887–889 (2002).
    [CrossRef]
  10. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [CrossRef]
  11. M. Bass, Handbook of Optics (McGraw-Hill, New York, 1995).
  12. K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  13. R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron. 8, 838–843 (1972).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  15. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [CrossRef]

2003 (1)

M. Mohebbi and R. Fedosejevs, “High-efficiency optical compression of Ti:sapphire laser pulses at 800 nm using a silver-coated hollow fiber,” Appl. Phys. B 76, 345–350 (2003).
[CrossRef]

2002 (3)

1998 (2)

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

C. P. J. Barty, W. White, W. Sibbett, and R. Trebino, “Introduction to the issue on ultrafast optics,” IEEE J. Sel. Top. Quantum Electron. 4, 157–158 (1998).
[CrossRef]

1997 (3)

1996 (2)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

1972 (1)

R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron. 8, 838–843 (1972).
[CrossRef]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Abrams, R. L.

R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron. 8, 838–843 (1972).
[CrossRef]

Baltuska, A.

Barty, C. P. J.

C. P. J. Barty, W. White, W. Sibbett, and R. Trebino, “Introduction to the issue on ultrafast optics,” IEEE J. Sel. Top. Quantum Electron. 4, 157–158 (1998).
[CrossRef]

Brabec, T.

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

Cheng, Z.

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

De Silvestri, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Fedosejevs, R.

M. Mohebbi and R. Fedosejevs, “High-efficiency optical compression of Ti:sapphire laser pulses at 800 nm using a silver-coated hollow fiber,” Appl. Phys. B 76, 345–350 (2003).
[CrossRef]

M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, “Silver-coated hollow-glass waveguide for applications at 800 nm,” Appl. Opt. 41, 7031–7035 (2002).
[CrossRef] [PubMed]

Franco, M. A.

Gaeta, A. L.

Gopal, V.

Grillon, G.

Harrington, J. A.

M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, “Silver-coated hollow-glass waveguide for applications at 800 nm,” Appl. Opt. 41, 7031–7035 (2002).
[CrossRef] [PubMed]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Hentschel, M.

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

Homoelle, D.

Kawachi, M.

Y. Matsuura, M. Miyagi, K. Shihoyama, and M. Kawachi, “Delivery of femtosecond pulses by flexible hollow fibers,” J. Appl. Phys. 91, 887–889 (2002).
[CrossRef]

Krausz, F.

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Lenzner, M.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Matsuura, K.

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Matsuura, Y.

Y. Matsuura, M. Miyagi, K. Shihoyama, and M. Kawachi, “Delivery of femtosecond pulses by flexible hollow fibers,” J. Appl. Phys. 91, 887–889 (2002).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Miyagi, M.

Y. Matsuura, M. Miyagi, K. Shihoyama, and M. Kawachi, “Delivery of femtosecond pulses by flexible hollow fibers,” J. Appl. Phys. 91, 887–889 (2002).
[CrossRef]

Mohebbi, M.

M. Mohebbi and R. Fedosejevs, “High-efficiency optical compression of Ti:sapphire laser pulses at 800 nm using a silver-coated hollow fiber,” Appl. Phys. B 76, 345–350 (2003).
[CrossRef]

M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, “Silver-coated hollow-glass waveguide for applications at 800 nm,” Appl. Opt. 41, 7031–7035 (2002).
[CrossRef] [PubMed]

Mourou, G.

Mysyrowicz, A.

Nibbering, E. T. J.

Nisoli, M.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Prade, B. S.

Pshenichnikov, M. S.

Sartania, S.

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Schnurer, M.

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

Shihoyama, K.

Y. Matsuura, M. Miyagi, K. Shihoyama, and M. Kawachi, “Delivery of femtosecond pulses by flexible hollow fibers,” J. Appl. Phys. 91, 887–889 (2002).
[CrossRef]

Sibbett, W.

C. P. J. Barty, W. White, W. Sibbett, and R. Trebino, “Introduction to the issue on ultrafast optics,” IEEE J. Sel. Top. Quantum Electron. 4, 157–158 (1998).
[CrossRef]

Spielmann, C.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Stagira, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

Svelto, O.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Tempea, G.

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

Trebino, R.

C. P. J. Barty, W. White, W. Sibbett, and R. Trebino, “Introduction to the issue on ultrafast optics,” IEEE J. Sel. Top. Quantum Electron. 4, 157–158 (1998).
[CrossRef]

Wei, Z.

White, W.

C. P. J. Barty, W. White, W. Sibbett, and R. Trebino, “Introduction to the issue on ultrafast optics,” IEEE J. Sel. Top. Quantum Electron. 4, 157–158 (1998).
[CrossRef]

Wiersma, D. A.

Yanovsky, V.

Appl. Opt. (1)

Appl. Phys. B (3)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189–196 (1997).
[CrossRef]

M. Schnurer, Z. Cheng, S. Sartania, M. Hentschel, G. Tempea, T. Brabec, and F. Krausz, “Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2,” Appl. Phys. B 67, 263–266 (1998).
[CrossRef]

M. Mohebbi and R. Fedosejevs, “High-efficiency optical compression of Ti:sapphire laser pulses at 800 nm using a silver-coated hollow fiber,” Appl. Phys. B 76, 345–350 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron. 8, 838–843 (1972).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. P. J. Barty, W. White, W. Sibbett, and R. Trebino, “Introduction to the issue on ultrafast optics,” IEEE J. Sel. Top. Quantum Electron. 4, 157–158 (1998).
[CrossRef]

J. Appl. Phys. (1)

Y. Matsuura, M. Miyagi, K. Shihoyama, and M. Kawachi, “Delivery of femtosecond pulses by flexible hollow fibers,” J. Appl. Phys. 91, 887–889 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

M. Bass, Handbook of Optics (McGraw-Hill, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

GVD of the HE11 mode in a fused-silica hollow fiber filled with air as a function of core radius (solid curve). The material dispersion of air is also shown (dashed line).

Fig. 2
Fig. 2

TOD of the HE11 mode in a fused-silica hollow fiber filled with air as a function of core radius (solid curve). Third-order material dispersion of air is also shown (dashed line).

Fig. 3
Fig. 3

Group-delay difference between HE12 (solid curve), HE13 (dashed curve), and HE14 (dotted curve) modes and the fundamental hybrid mode HE11 as a function of core radius for a 1-m fused-silica hollow fiber.

Fig. 4
Fig. 4

Group-delay difference between HE15 (solid curve), HE16 (dashed curve), HE17 (dotted curve), HE18 (dashed–dotted curve), and HE19 (dashed–double-dotted curve) modes and the fundamental hybrid mode HE11 as a function of core radius for a 1-m fused-silica hollow fiber.

Fig. 5
Fig. 5

Comparison of the GVD of the HE11 mode for silver-coated (solid curve) and fused-silica (dashed curve) hollow fibers filled with argon at 2.4 atm. The core radius is 125 µm.

Fig. 6
Fig. 6

Comparison of the TOD of the HE11 mode for silver-coated (solid curve) and fused-silica (dashed curve) hollow fibers filled with argon at 2.4 atm. The core radius is 125 µm.

Fig. 7
Fig. 7

Calculated coupling efficiency of the fundamental free-space mode to HE11 (solid curve), HE12 (dashed curve), and HE13 (dotted curve) modes of a hollow cylindrical waveguide as a function of normalized beam waist. Maximum coupling efficiency of 98% to the HE11 mode occurs for a normalized beam waist of 0.64.

Tables (3)

Tables Icon

Table 1 Coupling Efficiency for a Normalized Beam Waist of 0.64 Obtained from Fig. 7 for an 80-cm Focal-Length Lens

Tables Icon

Table 2 Intensity Attenuation Constants of HE1m Hybrid Modes

Tables Icon

Table 3 Coupling Efficiency for a Normalized Beam Waist of 0.32 Obtained from Fig. 7 for a 40-cm Focal-Length Lens

Metrics