Abstract

Three different broadband sensitization concepts for optically active erbium ions are reviewed: 1) silicon nanocrystals, with absorption over the full visible spectrum, efficiently couple their excitonic energy to Er3+, 2) silver-related defect states in sodalime silicate glass have absorption in the blue and transfer energy to Er3+, and 3) organic cage complexes coordinated with well-chosen chromophores serve as broadband sensitizers in the visible. Energy transfer rates, efficiencies, and limiting factors are addressed for each of these sensitizers. Implications of the use of strong sensitizers for planar waveguide design are illustrated by using a model for the sensitizing effect of ytterbium.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
    [Crossref]
  2. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  3. S. Hüffner, Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).
  4. G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
    [Crossref]
  5. M. K. Smit, “Integrated optics in silicon-based aluminium oxide,” Ph.D. thesis (Delft University of Technology, Delft, The Netherlands, 1991).
  6. R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
    [Crossref]
  7. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
    [Crossref]
  8. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
    [Crossref]
  9. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
    [Crossref]
  10. P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers in silicon,” MRS Bull. 23, 48–54 (1998).
  11. P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er-doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008–5012 (2003).
    [Crossref]
  12. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
    [Crossref]
  13. E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
    [Crossref]
  14. S. Taccheo, P. Laporta, and C. Svelto, “Wide tuneable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2624 (1996).
    [Crossref]
  15. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
    [Crossref]
  16. J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
    [Crossref]
  17. J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
    [Crossref]
  18. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+-doped aluminum oxide waveguides,” Opt. Mater. (Amsterdam, Neth.) 21, 705–712 (2003).
  19. M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
    [Crossref]
  20. J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
    [Crossref]
  21. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+-doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
    [Crossref]
  22. See, e.g., A. Polman, “Erbium-implanted thin-film photonic materials,” J. Appl. Phys. 82, 1–39 (1997), and references therein.
    [Crossref]
  23. S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
    [Crossref]
  24. P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
    [Crossref]
  25. N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
    [Crossref]
  26. T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
    [Crossref]
  27. Jung H. Shin, G. N. van den Hoven, and A. Polman, “Direct experimental evidence for trap-state mediated excitation of Er3+ in silicon,” Appl. Phys. Lett. 67, 377–379 (1995).
    [Crossref]
  28. S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
    [Crossref]
  29. S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
    [Crossref]
  30. S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
    [Crossref]
  31. G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
    [Crossref]
  32. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
    [Crossref]
  33. M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
    [Crossref]
  34. J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
    [Crossref]
  35. C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
    [Crossref]
  36. G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
    [Crossref]
  37. P. G. Kik, M. L. Brongersma, and A. Polman, “Strong exciton-erbium coupling in Si-nanocrystal-doped SiO2,” Appl. Phys. Lett. 76, 2325–2327 (2000).
    [Crossref]
  38. P. G. Kik and A. Polman, “Exciton–erbium interactions in Si-nanocrystal-doped SiO2,” J. Appl. Phys. 88, 1992–1998 (2000).
    [Crossref]
  39. P. G. Kik and A. Polman, “Gain limiting processes in Er-doped, Si-nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534–536 (2002).
    [Crossref]
  40. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, 11024–11036 (1993).
    [Crossref]
  41. J. Valenta, R. T. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070–1072 (2002).
    [Crossref]
  42. P. G. Kik, “Energy transfer in erbium-doped optical waveguides based on silicon,” Ph.D. thesis (FOM-Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands, 2000).
  43. D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
    [Crossref]
  44. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
    [Crossref]
  45. We assume that the nanocrystal absorption cross section and spontaneous emission lifetime are not affected by the presence of Er.
  46. F. Auzel, in Radiationless Processes, B. DiBartolo, ed. (Plenum, New York, 1980).
  47. F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
    [Crossref]
  48. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
    [Crossref]
  49. G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
    [Crossref]
  50. H. S. Han, S. Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
    [Crossref]
  51. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
    [Crossref]
  52. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
    [Crossref]
  53. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
    [Crossref] [PubMed]
  54. Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
    [Crossref]
  55. C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
    [Crossref]
  56. R. V. Ramaswamy and R. Srivistava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1000 (1988).
    [Crossref]
  57. M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).
  58. A. Meijerink, M. M. E. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids 54, 901–906 (1993).
    [Crossref]
  59. D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
    [Crossref]
  60. M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).
  61. B. Booth, in Polymers for Lightwave and Integrated Optics, L. A. Hornak, ed. (Dekker, New York, 1992).
  62. L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
    [Crossref]
  63. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
    [Crossref]
  64. E. Snoeks, G. N. van den Hoven, and A. Polman, “Optical doping of soda-lime-silicate glass with erbium by ion implantation,” J. Appl. Phys. 73, 8179–8183 (1993).
    [Crossref]
  65. G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
    [Crossref]
  66. J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
    [Crossref]
  67. G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
    [Crossref] [PubMed]
  68. M. P. Oude Wolbers, “Lanthanide ion complexes and their luminescence properties,” Ph.D. thesis (University of Twente, Enschede, The Netherlands, 1997).
  69. V. L. Ermolaev and E. B. Sveshnikova, “The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution,” Russ. Chem. Rev. 63, 905–922 (1994).
    [Crossref]
  70. G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
    [Crossref]
  71. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [Crossref]
  72. G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
    [Crossref]
  73. S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
    [Crossref]
  74. M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
    [Crossref]
  75. N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
    [Crossref]
  76. M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” J. Chem. Soc., Perkin Trans. 2 3, 433–440 (2000).
    [Crossref]
  77. M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
    [Crossref]
  78. S. I. Klink, H. Keizer, and F. C. J. M. van Veggel, “Organo-d-metal complexes as new class of photosensitizers for near-infrared lanthanide emission,” Angew. Chem., Int. Ed. 39, 4319–4321 (2000).
    [Crossref]
  79. F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
    [Crossref]
  80. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994).
  81. G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
    [Crossref]
  82. G. A. Hebbink, S. I. Klink, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes,” Inorg. Chim. Acta 317, 114–120 (2001). Erratum, 323, 171 (2001).
    [Crossref]
  83. S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
    [Crossref]
  84. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).
  85. S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
    [Crossref]
  86. R. H. Woudenberg and T. O. Boonstra, “Polymers comprising a fluorinated carbonate moiety,” International patent, deposited September 3, 1998, WO 9838237.
  87. L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
    [Crossref]
  88. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
    [Crossref]
  89. O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
    [Crossref]
  90. L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
    [Crossref]
  91. Y. Kawamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium(III), erbium(III) and ytterbium (III) complexes,” J. Appl. Phys. 40, 350–356 (2001).
    [Crossref]
  92. L. H. Slooff, P. G. Kik, A. Tip, and A. Polman, “Pumping planar waveguide amplifiers using a coupled waveguide system,” J. Lightwave Technol. 19, 1740–1744 (2001).
    [Crossref]
  93. G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
    [Crossref]
  94. J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+-, Nd3+-, and Ho3+-doped LaF3 nanoparticles,” Nano Lett. 2, 733–737 (2002).
    [Crossref]
  95. P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
    [Crossref]
  96. S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
    [Crossref]

2003 (8)

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er-doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008–5012 (2003).
[Crossref]

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+-doped aluminum oxide waveguides,” Opt. Mater. (Amsterdam, Neth.) 21, 705–712 (2003).

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[Crossref]

G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
[Crossref]

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
[Crossref]

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

2002 (10)

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+-, Nd3+-, and Ho3+-doped LaF3 nanoparticles,” Nano Lett. 2, 733–737 (2002).
[Crossref]

P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
[Crossref]

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[Crossref]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[Crossref]

J. Valenta, R. T. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070–1072 (2002).
[Crossref]

P. G. Kik and A. Polman, “Gain limiting processes in Er-doped, Si-nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534–536 (2002).
[Crossref]

2001 (6)

H. S. Han, S. Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[Crossref]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+-doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[Crossref]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

Y. Kawamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium(III), erbium(III) and ytterbium (III) complexes,” J. Appl. Phys. 40, 350–356 (2001).
[Crossref]

L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
[Crossref]

L. H. Slooff, P. G. Kik, A. Tip, and A. Polman, “Pumping planar waveguide amplifiers using a coupled waveguide system,” J. Lightwave Technol. 19, 1740–1744 (2001).
[Crossref]

2000 (12)

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

P. G. Kik, M. L. Brongersma, and A. Polman, “Strong exciton-erbium coupling in Si-nanocrystal-doped SiO2,” Appl. Phys. Lett. 76, 2325–2327 (2000).
[Crossref]

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si-nanocrystal-doped SiO2,” J. Appl. Phys. 88, 1992–1998 (2000).
[Crossref]

G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
[Crossref]

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
[Crossref]

D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
[Crossref]

M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” J. Chem. Soc., Perkin Trans. 2 3, 433–440 (2000).
[Crossref]

S. I. Klink, H. Keizer, and F. C. J. M. van Veggel, “Organo-d-metal complexes as new class of photosensitizers for near-infrared lanthanide emission,” Angew. Chem., Int. Ed. 39, 4319–4321 (2000).
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

1999 (3)

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
[Crossref]

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[Crossref]

1998 (7)

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
[Crossref]

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
[Crossref]

E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
[Crossref]

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers in silicon,” MRS Bull. 23, 48–54 (1998).

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[Crossref]

1997 (6)

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[Crossref]

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[Crossref]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

See, e.g., A. Polman, “Erbium-implanted thin-film photonic materials,” J. Appl. Phys. 82, 1–39 (1997), and references therein.
[Crossref]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[Crossref]

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
[Crossref] [PubMed]

1996 (6)

S. Taccheo, P. Laporta, and C. Svelto, “Wide tuneable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2624 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).

1995 (5)

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Jung H. Shin, G. N. van den Hoven, and A. Polman, “Direct experimental evidence for trap-state mediated excitation of Er3+ in silicon,” Appl. Phys. Lett. 67, 377–379 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
[Crossref]

G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
[Crossref]

1994 (3)

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
[Crossref]

V. L. Ermolaev and E. B. Sveshnikova, “The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution,” Russ. Chem. Rev. 63, 905–922 (1994).
[Crossref]

1993 (5)

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optical doping of soda-lime-silicate glass with erbium by ion implantation,” J. Appl. Phys. 73, 8179–8183 (1993).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

A. Meijerink, M. M. E. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids 54, 901–906 (1993).
[Crossref]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, 11024–11036 (1993).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
[Crossref]

1992 (2)

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).

1991 (4)

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
[Crossref]

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[Crossref]

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
[Crossref] [PubMed]

1990 (1)

P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
[Crossref]

1988 (2)

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
[Crossref]

R. V. Ramaswamy and R. Srivistava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1000 (1988).
[Crossref]

1972 (1)

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[Crossref]

1968 (1)

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

Alam, S. U.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

Allan, G.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, 11024–11036 (1993).
[Crossref]

Alvarez-Chavez, J. A.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

Atwater, H. A.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
[Crossref]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

Bae, B. S.

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
[Crossref]

Bae, B.-S.

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

Barnes, W. L.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

Becker, P. C.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

Beguin, A.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Bell, Z. R.

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

Blasse, G.

A. Meijerink, M. M. E. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids 54, 901–906 (1993).
[Crossref]

Brocklesby, W. S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
[Crossref]

P. G. Kik, M. L. Brongersma, and A. Polman, “Strong exciton-erbium coupling in Si-nanocrystal-doped SiO2,” Appl. Phys. Lett. 76, 2325–2327 (2000).
[Crossref]

D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
[Crossref]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

Bruce, A. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[Crossref]

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

Bünzli, J.-C. G.

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

Cacciato, A.

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
[Crossref]

Cacialli, F.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

Campisano, S. U.

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
[Crossref]

G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
[Crossref]

Camy, P.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Cantelar, E.

E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
[Crossref]

Carnera, A.

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[Crossref]

Chen, Y.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
[Crossref]

Chryssou, C. E.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
[Crossref]

Clarkson, W. A.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

Cockroft, N. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[Crossref]

Coffa, S.

P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[Crossref]

S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
[Crossref]

Coffer, J. L.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
[Crossref]

Cussó, F.

E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
[Crossref]

da Silva Jr., E. F.

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Dal Negro, L.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[Crossref]

de Barros, M. R. X.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

de Mello Donega, C.

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

De Sa, G. F.

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Delerue, C.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, 11024–11036 (1993).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

Diener, J.

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

Eaglesham, D. J.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
[Crossref]

Ermolaev, V. L.

V. L. Ermolaev and E. B. Sveshnikova, “The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution,” Russ. Chem. Rev. 63, 905–922 (1994).
[Crossref]

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Faulkner, S.

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

Favennec, P. N.

P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
[Crossref]

Fermann, M. E.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
[Crossref]

Fernandez Navarro, J. M.

M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).

Fontaine, N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Franzó, G.

G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
[Crossref]

S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
[Crossref]

Franzò, G.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[Crossref]

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[Crossref]

Friend, R. H.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

Fujii, M.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
[Crossref]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[Crossref]

Funk, D. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Gauneau, M.

P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
[Crossref]

Geurts, F. A. J.

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[Crossref]

Ghosh, R. N.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

Gonçalves e Silva, F. R.

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

Gosnell, T. R.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[Crossref]

Grave, L.

G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
[Crossref]

G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

Grubb, S. G.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

Grudinin, A. B.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

Güdel, H. U.

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

Hamelin, N.

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

Han, H. S.

H. S. Han, S. Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[Crossref]

Han, Hak-Seung

Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[Crossref]

Hanna, D. C.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
[Crossref]

Hattori, K.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

Hayashi, S.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
[Crossref]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[Crossref]

Hayden, J. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Hebbink, G. A.

G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
[Crossref]

G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
[Crossref]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

Heckler, H.

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

Hehlen, M. P.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[Crossref]

Hempstead, M.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Hofstraat, J. W.

L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” J. Chem. Soc., Perkin Trans. 2 3, 433–440 (2000).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[Crossref]

Hole, D. E.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
[Crossref]

Horiguchi, H.

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

Horiguchi, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

Houde-Walter, S. N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Iacona, F.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[Crossref]

G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
[Crossref]

Ikoma, T.

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

Iwayama, T. S.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
[Crossref]

Jacobson, D. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
[Crossref]

Jedrzejewski, K. P.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

John, J. St.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
[Crossref]

Juhasz, R. T.

J. Valenta, R. T. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070–1072 (2002).
[Crossref]

Kane, C. F.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

Kanzawa, Y.

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[Crossref]

Kawamura, Y.

Y. Kawamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium(III), erbium(III) and ytterbium (III) complexes,” J. Appl. Phys. 40, 350–356 (2001).
[Crossref]

Keizer, H.

S. I. Klink, H. Keizer, and F. C. J. M. van Veggel, “Organo-d-metal complexes as new class of photosensitizers for near-infrared lanthanide emission,” Angew. Chem., Int. Ed. 39, 4319–4321 (2000).
[Crossref]

Kenyon, A. J.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
[Crossref]

Kik, P. G.

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er-doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008–5012 (2003).
[Crossref]

P. G. Kik and A. Polman, “Gain limiting processes in Er-doped, Si-nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534–536 (2002).
[Crossref]

P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
[Crossref]

L. H. Slooff, P. G. Kik, A. Tip, and A. Polman, “Pumping planar waveguide amplifiers using a coupled waveguide system,” J. Lightwave Technol. 19, 1740–1744 (2001).
[Crossref]

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si-nanocrystal-doped SiO2,” J. Appl. Phys. 88, 1992–1998 (2000).
[Crossref]

P. G. Kik, M. L. Brongersma, and A. Polman, “Strong exciton-erbium coupling in Si-nanocrystal-doped SiO2,” Appl. Phys. Lett. 76, 2325–2327 (2000).
[Crossref]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
[Crossref]

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers in silicon,” MRS Bull. 23, 48–54 (1998).

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Kikoin, K.

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

Kimura, T.

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

Kistler, R. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
[Crossref]

Kitagawa, T.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

Klink, S. I.

G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
[Crossref]

S. I. Klink, H. Keizer, and F. C. J. M. van Veggel, “Organo-d-metal complexes as new class of photosensitizers for near-infrared lanthanide emission,” Angew. Chem., Int. Ed. 39, 4319–4321 (2000).
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

Kobayashi, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

Koch, F.

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

Kovalev, D.

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

Künzner, N.

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

L’Haridon, H.

P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
[Crossref]

Lannoo, M.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, 11024–11036 (1993).
[Crossref]

Laporta, P.

S. Taccheo, P. Laporta, and C. Svelto, “Wide tuneable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2624 (1996).
[Crossref]

LeFlem, G.

M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).

Lerminiaux, S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Libertino, S.

P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
[Crossref]

Linnros, J.

J. Valenta, R. T. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070–1072 (2002).
[Crossref]

Liu, W.-C.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Llopis, J.

M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).

Lombardo, S.

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
[Crossref]

G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
[Crossref]

Longo, R. L.

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Maazaz, M.

M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).

Malta, O. L.

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
[Crossref]

Meijerink, A.

A. Meijerink, M. M. E. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids 54, 901–906 (1993).
[Crossref]

Mesnaoui, M.

M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).

Min, K. S.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
[Crossref]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[Crossref]

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
[Crossref] [PubMed]

Moorcraft, L. P.

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

Moser, J. E.

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

Moutonnet, D.

P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
[Crossref]

Munoz, J. A.

E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
[Crossref]

Nilsson, J.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

Nouh, S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Nykolak, G.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

Obarski, G. E.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Oei, Y. S.

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

Oude Alink, P. G. B.

G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

Oude Wolbers, M. P.

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

Pacifici, D.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[Crossref]

G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
[Crossref]

Paje, S. E.

M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).

Parent, C.

M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).

Park, N.

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

Park, Namkyoo

Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[Crossref]

Park, O. H.

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
[Crossref]

Parke, S.

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[Crossref]

Penninkhof, J. J.

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

Peskin, A. P.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Peters, D. M.

D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
[Crossref]

Peters, F. G. A.

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

Peters, P. M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Piguet, C.

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

Pinizzotto, R. F.

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
[Crossref]

Pitt, C. W.

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
[Crossref]

Poate, J. M.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
[Crossref]

Polisski, G.

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

Polman, A.

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+-doped aluminum oxide waveguides,” Opt. Mater. (Amsterdam, Neth.) 21, 705–712 (2003).

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er-doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008–5012 (2003).
[Crossref]

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
[Crossref]

P. G. Kik and A. Polman, “Gain limiting processes in Er-doped, Si-nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534–536 (2002).
[Crossref]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[Crossref]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+-doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[Crossref]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
[Crossref]

L. H. Slooff, P. G. Kik, A. Tip, and A. Polman, “Pumping planar waveguide amplifiers using a coupled waveguide system,” J. Lightwave Technol. 19, 1740–1744 (2001).
[Crossref]

D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
[Crossref]

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si-nanocrystal-doped SiO2,” J. Appl. Phys. 88, 1992–1998 (2000).
[Crossref]

P. G. Kik, M. L. Brongersma, and A. Polman, “Strong exciton-erbium coupling in Si-nanocrystal-doped SiO2,” Appl. Phys. Lett. 76, 2325–2327 (2000).
[Crossref]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers in silicon,” MRS Bull. 23, 48–54 (1998).

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
[Crossref] [PubMed]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

See, e.g., A. Polman, “Erbium-implanted thin-film photonic materials,” J. Appl. Phys. 82, 1–39 (1997), and references therein.
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
[Crossref]

Jung H. Shin, G. N. van den Hoven, and A. Polman, “Direct experimental evidence for trap-state mediated excitation of Er3+ in silicon,” Appl. Phys. Lett. 67, 377–379 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
[Crossref]

S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
[Crossref]

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optical doping of soda-lime-silicate glass with erbium by ion implantation,” J. Appl. Phys. 73, 8179–8183 (1993).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
[Crossref]

Pope, S. J. A.

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

Priolo, F.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[Crossref]

G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
[Crossref]

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[Crossref]

S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
[Crossref]

Quimby, R. S.

Ramaswamy, R. V.

R. V. Ramaswamy and R. Srivistava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1000 (1988).
[Crossref]

Reinhard, C.

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

Reinhoudt, D.

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

Reinhoudt, D. N.

G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
[Crossref]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
[Crossref]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

Roman, J. E.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Saito, R.

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

Salvi, M.

P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
[Crossref]

Sandoe, J. N.

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[Crossref]

Sanford, N. A.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Santa-Cruz, P. A.

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Sanz-García, J. A.

E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
[Crossref]

Saris, F. W.

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

Sarkies, P. H.

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[Crossref]

Sato, A.

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

Schönecker, A.

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

Se, S.-Y.

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

Seo, S. Y.

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
[Crossref]

H. S. Han, S. Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[Crossref]

Seo, Se-Young

Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[Crossref]

Serna, R.

S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
[Crossref]

Shavaleev, N. M.

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

Shcheglov, K. V.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

Shepherd, D. P.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
[Crossref]

Shin, J. H.

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
[Crossref]

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

H. S. Han, S. Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[Crossref]

Shin, Jung H.

Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[Crossref]

Jung H. Shin, G. N. van den Hoven, and A. Polman, “Direct experimental evidence for trap-state mediated excitation of Er3+ in silicon,” Appl. Phys. Lett. 67, 377–379 (1995).
[Crossref]

G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
[Crossref]

Shmulovich, J.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

Shuto, K.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

Simas, A. M.

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Slooff, L. H.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
[Crossref]

L. H. Slooff, P. G. Kik, A. Tip, and A. Polman, “Pumping planar waveguide amplifiers using a coupled waveguide system,” J. Lightwave Technol. 19, 1740–1744 (2001).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

Smit, M. K.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

Snoeks, E.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optical doping of soda-lime-silicate glass with erbium by ion implantation,” J. Appl. Phys. 73, 8179–8183 (1993).
[Crossref]

Srivistava, R.

R. V. Ramaswamy and R. Srivistava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1000 (1988).
[Crossref]

Stouwdam, J. W.

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+-, Nd3+-, and Ho3+-doped LaF3 nanoparticles,” Nano Lett. 2, 733–737 (2002).
[Crossref]

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+-doped aluminum oxide waveguides,” Opt. Mater. (Amsterdam, Neth.) 21, 705–712 (2003).

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[Crossref]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+-doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[Crossref]

D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
[Crossref]

Suni, P. J.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
[Crossref]

Suyver, J. F.

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

Svelto, C.

S. Taccheo, P. Laporta, and C. Svelto, “Wide tuneable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2624 (1996).
[Crossref]

Sveshnikova, E. B.

V. L. Ermolaev and E. B. Sveshnikova, “The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution,” Russ. Chem. Rev. 63, 905–922 (1994).
[Crossref]

Taccheo, S.

S. Taccheo, P. Laporta, and C. Svelto, “Wide tuneable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2624 (1996).
[Crossref]

Tanguy, B.

M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).

Tip, A.

Townsend, J. E.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
[Crossref]

Turner, P. W.

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

Valenta, J.

J. Valenta, R. T. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070–1072 (2002).
[Crossref]

van Beelen, E. S. E.

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

van Dam, C.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

van den Hoven, G. N.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

Jung H. Shin, G. N. van den Hoven, and A. Polman, “Direct experimental evidence for trap-state mediated excitation of Er3+ in silicon,” Appl. Phys. Lett. 67, 377–379 (1995).
[Crossref]

G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
[Crossref]

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optical doping of soda-lime-silicate glass with erbium by ion implantation,” J. Appl. Phys. 73, 8179–8183 (1993).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

van der Elsken, J.

D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
[Crossref]

van der Elsken, J. A.

van Heek, M. M. E.

A. Meijerink, M. M. E. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids 54, 901–906 (1993).
[Crossref]

van Uffelen, J. W. M.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 slab waveguides,” Appl. Opt. 36, 3338–3341 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

van Veggel, F. C. J. M.

G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
[Crossref]

G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+-, Nd3+-, and Ho3+-doped LaF3 nanoparticles,” Nano Lett. 2, 733–737 (2002).
[Crossref]

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
[Crossref]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

L. H. Slooff, A. Polman, S. I. Klink, L. Grave, F. C. J. M. van Veggel, and J. W. Hofstraat, “Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides,” J. Opt. Soc. Am. B 18, 1690–1694 (2001).
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

S. I. Klink, H. Keizer, and F. C. J. M. van Veggel, “Organo-d-metal complexes as new class of photosensitizers for near-infrared lanthanide emission,” Angew. Chem., Int. Ed. 39, 4319–4321 (2000).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

Veasey, D. L.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Verhoeven, J. W.

M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” J. Chem. Soc., Perkin Trans. 2 3, 433–440 (2000).
[Crossref]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[Crossref]

Villegas, M. A.

M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).

Vinciguerra, V.

G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
[Crossref]

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[Crossref]

Wada, Y.

Y. Kawamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium(III), erbium(III) and ytterbium (III) complexes,” J. Appl. Phys. 40, 350–356 (2001).
[Crossref]

Ward, M. D.

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

Weber, M. J.

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
[Crossref]

Werts, M. H. V.

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” J. Chem. Soc., Perkin Trans. 2 3, 433–440 (2000).
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[Crossref]

Wilkinson, J. S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

Woldering, L. A.

G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
[Crossref]

Yamamoto, K.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
[Crossref]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[Crossref]

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Yanagida, S.

Y. Kawamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium(III), erbium(III) and ytterbium (III) complexes,” J. Appl. Phys. 40, 350–356 (2001).
[Crossref]

Yang, C. M.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

Yasu, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

Yokoi, A.

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

Yoshida, M.

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
[Crossref]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[Crossref]

Young, M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

Adv. Mater. (Weinheim, Ger.) (1)

G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide(III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. (Weinheim, Ger.) 14, 1147–1150 (2002).
[Crossref]

Angew. Chem., Int. Ed. (1)

S. I. Klink, H. Keizer, and F. C. J. M. van Veggel, “Organo-d-metal complexes as new class of photosensitizers for near-infrared lanthanide emission,” Angew. Chem., Int. Ed. 39, 4319–4321 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[Crossref]

Appl. Phys. Lett. (20)

P. G. Kik, M. L. Brongersma, and A. Polman, “Strong exciton-erbium coupling in Si-nanocrystal-doped SiO2,” Appl. Phys. Lett. 76, 2325–2327 (2000).
[Crossref]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[Crossref]

T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ≈1.54 μm,” Appl. Phys. Lett. 65, 983–985 (1994).
[Crossref]

Jung H. Shin, G. N. van den Hoven, and A. Polman, “Direct experimental evidence for trap-state mediated excitation of Er3+ in silicon,” Appl. Phys. Lett. 67, 377–379 (1995).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon,” Appl. Phys. Lett. 63, 1942–1944 (1993).
[Crossref]

G. N. van den Hoven, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

S. Taccheo, P. Laporta, and C. Svelto, “Wide tuneable single-frequency erbium–ytterbium phosphate glass laser,” Appl. Phys. Lett. 68, 2621–2624 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62, 3065–3067 (1993).
[Crossref]

C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, “Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films,” Appl. Phys. Lett. 75, 2011–3013 (1999).
[Crossref]

J. Valenta, R. T. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070–1072 (2002).
[Crossref]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron–hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76, 351–353 (2000).
[Crossref]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion-beam-synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033–2035 (1996).
[Crossref]

G. Franzó, D. Pacifici, V. Vinciguerra, F. Priolo, and F. Iacona, “Er3+ ions–Si nanocrystal interactions and their effects on the luminescence properties,” Appl. Phys. Lett. 76, 2167–2169 (2000).
[Crossref]

H. S. Han, S. Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568–4570 (2001).
[Crossref]

Hak-Seung Han, Se-Young Seo, Jung H. Shin, and Namkyoo Park, “Coefficient determination related to optical gain in erbium-doped, silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[Crossref]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[Crossref]

O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in solgel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82, 2787–2789 (2003).
[Crossref]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[Crossref]

S.-Y. Se, J. H. Shin, B.-S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium–thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82, 3445–3447 (2003).
[Crossref]

Chem. Commun. (Cambridge) (1)

N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, and M. D. Ward, “Sensitised near-infrared emission from lanthanides using a covalently attached Pt(II) fragment as an antenna group,” Chem. Commun. (Cambridge) 10, 1134–1135 (2003).
[Crossref]

Chem. Phys. Lett. (1)

M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven, “Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates,” Chem. Phys. Lett. 276, 196–201 (1997).
[Crossref]

Chem.-Eur. J. (1)

M. P. Oude Wolbers, F. C. J. M. van Veggel, F. G. A. Peters, E. S. E. van Beelen, J. W. Hofstraat, F. A. J. Geurts, and D. N. Reinhoudt, “Sensitized near-infrared emission from Nd3+ and Er3+ complexes of fluorescein-bearing calix[4]arene cages,” Chem.-Eur. J. 4, 772–780 (1998).
[Crossref]

ChemPhysChem (1)

G. A. Hebbink, S. I. Klink, L. Grave, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes,” ChemPhysChem 3, 1014–1018 (2002), and references cited therein.
[Crossref]

Coord. Chem. Rev. (1)

G. F. De Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., “Spectroscopic properties and design of highly luminescent lanthanide coordination complexes,” Coord. Chem. Rev. 196, 165–195 (2000).
[Crossref]

Electron. Lett. (4)

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24, 1135–1136 (1988).
[Crossref]

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouh, A. Beguin, S. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[Crossref]

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, “Amplification in erbium-doped silica-based planar lightwave circuits,” Electron. Lett. 28, 1818–1819 (1992).
[Crossref]

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+-sensitized, Er3+-doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

Eur. J. Solid State Inorg. Chem. (1)

M. Mesnaoui, M. Maazaz, C. Parent, B. Tanguy, and G. LeFlem, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaPO3–AgPO3 system,” Eur. J. Solid State Inorg. Chem. 29, 1001–1013 (1992).

IEEE J. Quantum Electron. (1)

J. Nilsson, S. U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, “High-power and tunable operation of erbium–ytterbium-codoped, cladding-pumped fiber lasers,” IEEE J. Quantum Electron. 37, 987–994 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mV threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett. 8, 518–520 (1996).
[Crossref]

J. Am. Chem. Soc. (1)

J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, “Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals,” J. Am. Chem. Soc. 121, 1888–1892 (1998).
[Crossref]

J. Appl. Phys. (16)

L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel, D. Reinhoudt, and J. W. Hofstraat, “Optical properties of erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83, 497–503 (1998).
[Crossref]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778–3784 (1991).
[Crossref]

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optical doping of soda-lime-silicate glass with erbium by ion implantation,” J. Appl. Phys. 73, 8179–8183 (1993).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79, 1258–1266 (1996).
[Crossref]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+-doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[Crossref]

See, e.g., A. Polman, “Erbium-implanted thin-film photonic materials,” J. Appl. Phys. 82, 1–39 (1997), and references therein.
[Crossref]

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er-doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008–5012 (2003).
[Crossref]

P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” J. Appl. Phys. 29, 524–526 (1990).
[Crossref]

N. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, and F. W. Saris, “Energy backtransfer and infrared photoresponse in erbium-doped, silicon p-n diodes,” J. Appl. Phys. 88, 5381–5387 (2000).
[Crossref]

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Erbium in oxygen-doped silicon: electroluminescence,” J. Appl. Phys. 77, 6504–6510 (1995).
[Crossref]

M. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, “Photoluminescence from SiO2 films containing Si nanocrystals and Er: effects of nanocrystalline size on the photoluminescence efficiency of Er3+,” J. Appl. Phys. 84, 4525–4531 (1998).
[Crossref]

G. N. van den Hoven, Jung H. Shin, A. Polman, S. Lombardo, and S. U. Campisano, “Erbium in oxygen-doped silicon: optical excitation,” J. Appl. Phys. 78, 2642–2650 (1995).
[Crossref]

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si-nanocrystal-doped SiO2,” J. Appl. Phys. 88, 1992–1998 (2000).
[Crossref]

P. G. Kik and A. Polman, “Gain limiting processes in Er-doped, Si-nanocrystal waveguides in SiO2,” J. Appl. Phys. 91, 534–536 (2002).
[Crossref]

Y. Kawamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium(III), erbium(III) and ytterbium (III) complexes,” J. Appl. Phys. 40, 350–356 (2001).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, and J. W. Hofstraat, “Sensitized near-infrared luminescence from polydentate, triphenylene-functionalized Nd3+, Yb3+, and Er3+ complexes,” J. Appl. Phys. 86, 1181–1185 (1999).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

J. Chem. Soc., Perkin Trans. 2 (1)

M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” J. Chem. Soc., Perkin Trans. 2 3, 433–440 (2000).
[Crossref]

J. Lightwave Technol. (4)

L. H. Slooff, P. G. Kik, A. Tip, and A. Polman, “Pumping planar waveguide amplifiers using a coupled waveguide system,” J. Lightwave Technol. 19, 1740–1744 (2001).
[Crossref]

P. G. Kik, A. Polman, S. Libertino, and S. Coffa, “Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 μm,” J. Lightwave Technol. 20, 862–867 (2002).
[Crossref]

R. V. Ramaswamy and R. Srivistava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1000 (1988).
[Crossref]

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[Crossref]

J. Non-Cryst. Solids (1)

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263&264, 369–381 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (4)

F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H. U. Güdel, C. Piguet, J. E. Moser, and J.-C. G. Bünzli, “Visible and near-infrared luminescence of lanthanide-containing, dimetallic, triple-stranded helicates: energy transfer mechanisms in the SmIII and YbIII molecular edifices,” J. Phys. Chem. A 106, 1670–1677 (2002).
[Crossref]

S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, and M. H. V. Werts, “Synergistic com- plexation of Eu3+ by a polydentate ligand and a bidentate antenna to obtain ternary complexes with high luminescence quantum yields,” J. Phys. Chem. A 106, 3681–3689 (2002).
[Crossref]

G. A. Hebbink, L. Grave, L. A. Woldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Unexpected sensitization efficiency of the near-infrared Nd3+, Er3+, and Yb3+ emission by fluorescein compared to eosin and erythrosin,” J. Phys. Chem. A 107, 2483–2491 (2003), and references cited.
[Crossref]

S. I. Klink, L. Grave, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, D. N. Reinhoudt, and F. C. J. M. van Veggel, “A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ complexes,” J. Phys. Chem. A 104, 5457–5468 (2000).
[Crossref]

J. Phys. Chem. Solids (1)

A. Meijerink, M. M. E. van Heek, and G. Blasse, “Luminescence of Ag+ in crystalline and glassy SrB4O7,” J. Phys. Chem. Solids 54, 901–906 (1993).
[Crossref]

J. Phys. Condens. Matter (1)

E. Cantelar, J. A. Munoz, J. A. Sanz-García, and F. Cussó, “Yb3+ to Er3+ energy transfer in LiNbO3,” J. Phys. Condens. Matter 10, 8893–8903 (1998).
[Crossref]

J. Phys. D (1)

J. N. Sandoe, P. H. Sarkies, and S. Parke, “Variation of Er3+ cross section for stimulated emission with glass composition,” J. Phys. D 5, 1788–1799 (1972).
[Crossref]

MRS Bull. (1)

P. G. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers in silicon,” MRS Bull. 23, 48–54 (1998).

Nano Lett. (1)

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+-, Nd3+-, and Ho3+-doped LaF3 nanoparticles,” Nano Lett. 2, 733–737 (2002).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (2)

S. Lombardo, S. U. Campisano, G. N. van den Hoven, and A. Polman, “Room-temperature luminescence in semi-insulating polycrystalline silicon implanted with Er,” Nucl. Instrum. Methods Phys. Res. B 96, 378–381 (1995).
[Crossref]

D. M. Peters, C. Strohhöfer, M. L. Brongersma, J. van der Elsken, and A. Polman, “Formation mechanism of silver nanocrystals made by ion irradiation of Na+↔Ag+ ion-exchanged sodalime silicate glass,” Nucl. Instrum. Methods Phys. Res. B 168, 237–244 (2000).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (Amsterdam, Neth.) (1)

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+-doped aluminum oxide waveguides,” Opt. Mater. (Amsterdam, Neth.) 21, 705–712 (2003).

Phys. Chem. Glasses (1)

M. A. Villegas, J. M. Fernandez Navarro, S. E. Paje, and J. Llopis, “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37, 248–253 (1996).

Phys. Rev. (1)

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968).
[Crossref]

Phys. Rev. A (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
[Crossref]

Phys. Rev. B (6)

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals–Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[Crossref]

D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485–4487 (2000).
[Crossref]

F. Priolo, G. Franzò, S. Coffa, and A. Carnera, “Excitation and nonradiative de-excitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[Crossref]

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, 11024–11036 (1993).
[Crossref]

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[Crossref]

S. Coffa, G. Franzó, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B 49, 16313–16320 (1994).
[Crossref]

Russ. Chem. Rev. (1)

V. L. Ermolaev and E. B. Sveshnikova, “The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution,” Russ. Chem. Rev. 63, 905–922 (1994).
[Crossref]

Other (12)

M. P. Oude Wolbers, “Lanthanide ion complexes and their luminescence properties,” Ph.D. thesis (University of Twente, Enschede, The Netherlands, 1997).

B. Booth, in Polymers for Lightwave and Integrated Optics, L. A. Hornak, ed. (Dekker, New York, 1992).

We assume that the nanocrystal absorption cross section and spontaneous emission lifetime are not affected by the presence of Er.

F. Auzel, in Radiationless Processes, B. DiBartolo, ed. (Plenum, New York, 1980).

P. G. Kik, “Energy transfer in erbium-doped optical waveguides based on silicon,” Ph.D. thesis (FOM-Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands, 2000).

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

S. Hüffner, Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).

M. K. Smit, “Integrated optics in silicon-based aluminium oxide,” Ph.D. thesis (Delft University of Technology, Delft, The Netherlands, 1991).

R. H. Woudenberg and T. O. Boonstra, “Polymers comprising a fluorinated carbonate moiety,” International patent, deposited September 3, 1998, WO 9838237.

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).

G. A. Hebbink, S. I. Klink, P. G. B. Oude Alink, and F. C. J. M. van Veggel, “Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes,” Inorg. Chim. Acta 317, 114–120 (2001). Erratum, 323, 171 (2001).
[Crossref]

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (31)

Fig. 1
Fig. 1

Energy level diagram of Er3+.

Fig. 2
Fig. 2

Schematic of a miniature optical waveguide amplifier. An amplifying waveguide spiral (AMP) is integrated with wavelength division multiplexers (WDM) for pump and signal and a 1×4 splitter (SPL).

Fig. 3
Fig. 3

Optical gain as a function of pump power measured on an Er-implanted miniature optical amplifier based on Al2O3; from van den Hoven et al., Ref. 4.

Fig. 4
Fig. 4

Degree of inversion (a) and differential gain (b) along the length of the waveguide. Calculations are made for an Er-doped, Al2O3 ridge waveguide pumped at 100 mW at 1.48 µm with the pump direction indicated by the arrow. The dip in the front facet is caused by ESA. From Kik and Polman, Ref. 10.

Fig. 5
Fig. 5

Energy level diagram of Er3+ and Yb3+. The arrows represent the processes included in the rate equation model used for the calculations. Included are absorption and stimulated emission processes σij, spontaneous decays Wij, and energy transfer processes Cij. Dashed arrows represent spontaneous processes considered as instantaneous. From Strohhöfer and Polman, Ref. 21.

Fig. 6
Fig. 6

Calculations of signal output from a waveguide of fixed length doped with 3.35×1020 cm-3 Er3+ as a function of launched pump power. Different curves represent different Yb3+ concentrations. Waveguide length, (a) 8 cm and (b) 4 cm. The inset shows a schematic of the waveguide cross section. From Strohhöfer and Polman, Ref. 21.

Fig. 7
Fig. 7

Calculation of the maximum possible signal output from a waveguide doped with 3.35×1020 cm-3 Er3+ as a function of launched pump power. Different symbols represent different concentrations of Yb3+. The length of the waveguides has been adjusted for maximum gain for each Yb3+ concentration and each launched pump power. From Strohhöfer and Polman, Ref. 21.

Fig. 8
Fig. 8

Calculation of the pump power that has to be launched into the waveguide to reach a gain of 1.8, 3, 4.8, and 6 dB in a waveguide whose length has been optimized, as a function of Yb3+ concentration. Also plotted is the dependence of the waveguide length (optimized for maximum gain) on Yb3+ concentration for gains of 1.8 and 3 dB. The drawn curves are guides to the eye. From Strohhöfer and Polman, Ref. 21.

Fig. 9
Fig. 9

(a) Schematic Er excitation model showing the electronic band structure of Si-nanocrystal-doped SiO2 and the Er 4f energy levels. An optically generated exciton (dotted ellipse) confined in the nanocrystal can recombine and excite Er3+. (b) Schematic representation of SiO2 containing Er (crosses) and nanocrystals (circles). The nanocrystals that couple to Er (black circles) show no exciton luminescence. From Kik et al., Ref. 37.

Fig. 10
Fig. 10

Photoluminescence spectra at 20, 60, 180 and 300 K showing a broad nanocrystal spectrum in the range 600–1100 nm and two clear Er3+ luminescence lines at 982 nm and 1536 nm. The Er concentration was 1.8 at.%. λpump=458 nm, 1 mW. From Kik et al., Ref. 37.

Fig. 11
Fig. 11

Excitation spectrum of the nanocrystal luminescence at 750 nm and the Er3+ luminescence at 1526 nm. The dotted curve is a guide to the eye. From Kik, Ref. 42.

Fig. 12
Fig. 12

Luminescence decay measurements taken at 15 K (dots) and at 300 K (drawn lines) of (a) nanocrystal luminescence at 750 nm, and (b) Er3+ luminescence at 1536 nm. λpump=458 nm, 1 mW. From Kik et al., Ref. 37.

Fig. 13
Fig. 13

PL intensity measured as the 5 mW pump beam is switched on and off, measured at 15 K for (a) nanocrystal luminescence at 750 nm, and (b) Er luminescence at 1536 nm. λpump=458 nm. From Kik and Polman, Ref. 38.

Fig. 14
Fig. 14

Photoluminescence spectra of Si-nanocrystal-doped SiO2 containing different Er3+ concentrations in the range 0–1.8 at.%, measured at 15 K with pump power of 1 mW at 458 nm. From Kik and Polman, Ref. 38.

Fig. 15
Fig. 15

Rise times (open triangles) and decay times (filled triangles) of the 1536-nm Er luminescence measured at 15 K at a pump power of 1 mW at 458 nm, and the Er3+ excitation rate derived from these data (open circles). The drawn curves serve as guides to the eye. From Kik and Polman, Ref. 38.

Fig. 16
Fig. 16

Photoluminescence intensity of the nanocrystal luminescence at 750 nm and the Er3+ luminescence at 1536 nm as a function of pump power for samples containing 0.015 at.% and 1.8 at.% Er measured at 15 K with 458-nm pump beam in a ≈1 mm2 spot. From Kik and Polman, Ref. 38.

Fig. 17
Fig. 17

(a) Er and Si concentration profiles in an ion-implanted planar waveguide sample as determined by Rutherford backscattering spectroscopy. (b) Optical mode image at a wavelength of 1.49 µm taken at the output facet of an Er3+-doped Si-nanocrystal-based ridge waveguide. The contour lines indicate constant intensity. A sketch of the waveguide structure is included. From Kik and Polman, Ref. 39.

Fig. 18
Fig. 18

(a) Normalized transmission spectra of Si-nanocrystal-based waveguides containing no Er (dotted curve) and 1.3 at.% Er (solid curve). (b) Er-related absorption spectrum (solid curve) derived from the data in (a) and Er photoluminescence spectrum (dashed curve) collected at the waveguide output facet (pump power 180 mW at 458 nm). From Kik and Polman, Ref. 39.

Fig. 19
Fig. 19

Absorbance of silica glass samples doped with Er and Ag. The band at ≈420 nm is caused by the plasmon resonance of Ag nanocrystals formed during Er implantation into Ag-containing glass. The data were measured relative to an untreated reference glass slide.

Fig. 20
Fig. 20

PL spectra of Er-doped borosilicate glass doped with Ag by an ion exchange process (open symbols). Note that the Er3+ was excited at a wavelength which cannot be absorbed directly by Er3+. The emission spectra are identical to the one obtained for Er3+ in glass without Ag when excited to its  4F7/2 state (solid squares). The inset shows the energy level spectrum of Er3+. From Strohhöfer and Polman, Ref. 55.

Fig. 21
Fig. 21

PL intensity at 1539 nm as a function of excitation wavelength for three different samples; (a) borosilicate glass doped with Er only, (b) Er- and Ag-doped borosilicate glass. From Strohhöfer and Polman, Ref. 55.

Fig. 22
Fig. 22

Two-dimensional representation of the structure of (a) the cyclic Er3+ complex; asterisks represent either two H (cyc-H) or two D (cyc-D) atoms, and (b) the acyclic Er3+ complex (acyc-H). The outer two benzene rings lie in one plane that is tilted backward, whereas the middle benzene ring is tilted forward. In this way, a cage is constructed encapsulating the Er3+ ion. (c) Three-dimensional representation of the cyclic complex (cyc-H). From Slooff et al., Ref. 62.

Fig. 23
Fig. 23

Schematic diagram of the ligand-Er3+ system. The complex is first excited from the singlet S0 ground state to the singlet S1 excited state, followed by fast relaxation to the triplet T1 state. From there, energy transfer to the Er3+ 4f levels may take place. From these levels, rapid relaxation to the  4I13/2 first excited state in Er3+ takes place. Finally, the Er3+ may decay to the  4I15/2 ground manifold by the emission of a 1.54 µm photon. From Slooff et al., Ref. 62.

Fig. 24
Fig. 24

Normalized room temperature PL spectra of Er3+ complex in (a) KBr tablets and (b) dimethylformamide, at a pump wavelength of 488 nm (power 100 mW). From Slooff et al., Ref. 62.

Fig. 25
Fig. 25

Room temperature PL spectrum of acyc-H in KBr after excitation via the ligand at 337 nm (pulse energy 20 µJ). From Slooff et al., Ref. 62.

Fig. 26
Fig. 26

Two-dimensional representation of the lissamine-Nd3+ complex. From Slooff et al., Ref. 87.

Fig. 27
Fig. 27

Near-infrared emission spectra of Nd3+-, Yb3+-, and Er3+-sensitized complexes similar to that shown in Fig. 26, but with a fluorescein as sensitizer, in CH3OD (Nd3+ and Yb3+) and in CD3OD (Er3+) solution; λex=505 nm. From Hebbink et al., Ref. 72.

Fig. 28
Fig. 28

PL at 1060 nm as a function of excitation wavelength for the benzoyl-Nd3+ complex (Bz.Nd) (10-6 M, squares) and the lissamine functionalized Nd3+ complex (Ls.Nd) (10-6 M, circles) in DMSO-d6 solutions. The absorption spectra of Bz.Nd and Ls.Nd are also shown (drawn curves). Note that the absorption data for the Bz.Nd solution are multiplied by a factor of 2000. From Slooff et al., Ref. 87.

Fig. 29
Fig. 29

PL spectra of lissamine-functionalized Nd3+ complex (Ls.Nd) (10-6 M) and the benzol-Nd3+ complex (10-6 M) in solutions. The excitation wavelength is 515 nm at a pump power of 60 mW. Note that at ≈1340 nm the spectra are multiplied by a factor of 5. From Slooff et al., Ref. 87.

Fig. 30
Fig. 30

Pump intensity in the waveguide structure as a function of distance z along the waveguide. From Slooff et al., Ref. 92.

Fig. 31
Fig. 31

Pump power in the signal guide as function of distance z in a sensitized Nd3+-doped polymer waveguide. The inset shows the calculated differential gain as a function of distance along the waveguide for a coupled waveguide system and a butt-coupled waveguide. The input power in the pump waveguide is 1 W in both cases. From Slooff et al., Ref. 92.

Metrics