Abstract

Three different broadband sensitization concepts for optically active erbium ions are reviewed: 1) silicon nanocrystals, with absorption over the full visible spectrum, efficiently couple their excitonic energy to Er3+, 2) silver-related defect states in sodalime silicate glass have absorption in the blue and transfer energy to Er3+, and 3) organic cage complexes coordinated with well-chosen chromophores serve as broadband sensitizers in the visible. Energy transfer rates, efficiencies, and limiting factors are addressed for each of these sensitizers. Implications of the use of strong sensitizers for planar waveguide design are illustrated by using a model for the sensitizing effect of ytterbium.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (31)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription