Abstract

The intensity-noise properties and polarization dynamics of a two-polarization Er:Yb codoped fiber laser are investigated and discussed. For a laser without polarization control, the low-frequency relative intensity noise reaches a minimum of approximately -90 dB/Hz. Polarization-sensitive detection reveals that the low-frequency intensity noise is influenced by a strong resonance associated with anticorrelated intensity fluctuations of the orthogonal linearly polarized modes. The frequency of the resonance varies linearly with laser power and leads to an increase in low-frequency noise of more than 45 dB for the polarized output of the laser.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE J. Lightwave Technol. 16, 661–669 (1998).
    [CrossRef]
  2. S. Yamashita and K. Hsu, “Single-frequency, single-polarization operation of tunable miniature erbium:ytterbium fiber Fabry–Perot lasers by use of self-injection locking,” Opt. Lett. 23, 1200–1202 (1998).
    [CrossRef]
  3. P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572–584 (1996).
    [CrossRef]
  4. J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller matrix formalism for modeling polarization effects in erbium-doped fiber,” J. Lightwave Technol. 16, 200–206 (1998).
    [CrossRef]
  5. E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Modeling of polarization-mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998).
    [CrossRef]
  6. E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Corrections to modeling of polarization mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 35, 1097–1100 (1999).
    [CrossRef]
  7. S. W. Lovseth and D. Y. Stepanov, “Dynamic analysis of multiple wavelength DFB fiber lasers,” IEEE J. Quantum Electron. 37, 1237–1245 (2001).
    [CrossRef]
  8. B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, “Low-frequency dynamics of a Nd-doped glass laser,” Phys. Rev. A 64, 023816 (2001).
    [CrossRef]
  9. F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
    [CrossRef]
  10. K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett. 65, 1749–1752 (1990).
    [CrossRef] [PubMed]
  11. P. LeBoudec, F. Sanchez, C. Jaouen, P. L. Francois, J. F. Bayon, and G. Stephan, “Antiphase dynamics and chaos in self-pulsing erbium-doped fiber laser,” Opt. Lett. 18, 1890–1892 (1993).
    [CrossRef]
  12. E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
    [CrossRef] [PubMed]
  13. J. Mulet, C. R. Mirasso, and M. San Miguel, “Polarization resolved intensity noise in vertical-cavity surface-emitting lasers,” Phys. Rev. A 64, 023817 (2001).
    [CrossRef]
  14. D. C. Kilper, K. Croussore, E. Rowell, and M. Y. A. Raja, “Polarization dependent intensity noise in Er/Yb codoped fiber lasers,” in Conference on Lasers and Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).
  15. M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spatial-mode behavior of short-wavelength VCSELs,” J. Opt. Laser Technol. 34, 129–134 (2002).
    [CrossRef]
  16. M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spectral properties of ion-implanted and oxide-confined VCSELs,” J. Opt. Eng., 41, 704–710 (2002).
    [CrossRef]
  17. J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
    [CrossRef]
  18. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22, 694–696 (1997).
    [CrossRef] [PubMed]
  19. M. Svalgaard and S. L. Gilbert, “Stability of short, single-mode erbium-doped fiber lasers,” Appl. Opt. 36, 4999–5003 (1997).
    [CrossRef] [PubMed]
  20. S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser,” Opt. Lett. 21, 1747–1749 (1996).
    [CrossRef] [PubMed]
  21. M. Travagnin and L. A. Lugiato, “Microscopic model of quantum noise in single-mode semiconductor lasers,” Phys. Rev. A 62, 043813 (2000).
    [CrossRef]
  22. C. B. Su, J. Schlafer, and R. B. Lauer, “Explanation of low frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
    [CrossRef]
  23. M. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. 7, 1052–1059 (1986).
    [CrossRef]
  24. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992).
    [CrossRef] [PubMed]
  25. M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191–4205 (1998).
    [CrossRef]
  26. M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser,” Phys. Rev. A 60, 4105–4113 (1999).
    [CrossRef]
  27. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
    [CrossRef]
  28. J.-L. Vey, C. Degen, K. Auen, and W. ElsaBer, “Quantum noise and polarization properties of vertical-cavity surface-emitting lasers,” Phys. Rev. A 60, 3284–3295 (1999).
    [CrossRef]

2002 (2)

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spatial-mode behavior of short-wavelength VCSELs,” J. Opt. Laser Technol. 34, 129–134 (2002).
[CrossRef]

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spectral properties of ion-implanted and oxide-confined VCSELs,” J. Opt. Eng., 41, 704–710 (2002).
[CrossRef]

2001 (3)

J. Mulet, C. R. Mirasso, and M. San Miguel, “Polarization resolved intensity noise in vertical-cavity surface-emitting lasers,” Phys. Rev. A 64, 023817 (2001).
[CrossRef]

S. W. Lovseth and D. Y. Stepanov, “Dynamic analysis of multiple wavelength DFB fiber lasers,” IEEE J. Quantum Electron. 37, 1237–1245 (2001).
[CrossRef]

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, “Low-frequency dynamics of a Nd-doped glass laser,” Phys. Rev. A 64, 023816 (2001).
[CrossRef]

2000 (1)

M. Travagnin and L. A. Lugiato, “Microscopic model of quantum noise in single-mode semiconductor lasers,” Phys. Rev. A 62, 043813 (2000).
[CrossRef]

1999 (3)

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser,” Phys. Rev. A 60, 4105–4113 (1999).
[CrossRef]

J.-L. Vey, C. Degen, K. Auen, and W. ElsaBer, “Quantum noise and polarization properties of vertical-cavity surface-emitting lasers,” Phys. Rev. A 60, 3284–3295 (1999).
[CrossRef]

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Corrections to modeling of polarization mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 35, 1097–1100 (1999).
[CrossRef]

1998 (5)

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE J. Lightwave Technol. 16, 661–669 (1998).
[CrossRef]

S. Yamashita and K. Hsu, “Single-frequency, single-polarization operation of tunable miniature erbium:ytterbium fiber Fabry–Perot lasers by use of self-injection locking,” Opt. Lett. 23, 1200–1202 (1998).
[CrossRef]

J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller matrix formalism for modeling polarization effects in erbium-doped fiber,” J. Lightwave Technol. 16, 200–206 (1998).
[CrossRef]

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Modeling of polarization-mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998).
[CrossRef]

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191–4205 (1998).
[CrossRef]

1997 (2)

1996 (2)

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser,” Opt. Lett. 21, 1747–1749 (1996).
[CrossRef] [PubMed]

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572–584 (1996).
[CrossRef]

1995 (2)

F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
[CrossRef]

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

1994 (2)

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992).
[CrossRef] [PubMed]

1990 (2)

C. B. Su, J. Schlafer, and R. B. Lauer, “Explanation of low frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[CrossRef]

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett. 65, 1749–1752 (1990).
[CrossRef] [PubMed]

1986 (1)

M. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. 7, 1052–1059 (1986).
[CrossRef]

Al-Dwayyan, A.

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spatial-mode behavior of short-wavelength VCSELs,” J. Opt. Laser Technol. 34, 129–134 (2002).
[CrossRef]

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spectral properties of ion-implanted and oxide-confined VCSELs,” J. Opt. Eng., 41, 704–710 (2002).
[CrossRef]

Archambault, J. L.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

Auen, K.

J.-L. Vey, C. Degen, K. Auen, and W. ElsaBer, “Quantum noise and polarization properties of vertical-cavity surface-emitting lasers,” Phys. Rev. A 60, 3284–3295 (1999).
[CrossRef]

Baev, V. M.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, “Low-frequency dynamics of a Nd-doped glass laser,” Phys. Rev. A 64, 023816 (2001).
[CrossRef]

Bayon, J. F.

Bracikowski, C.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett. 65, 1749–1752 (1990).
[CrossRef] [PubMed]

Cao, Y.

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spectral properties of ion-implanted and oxide-confined VCSELs,” J. Opt. Eng., 41, 704–710 (2002).
[CrossRef]

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spatial-mode behavior of short-wavelength VCSELs,” J. Opt. Laser Technol. 34, 129–134 (2002).
[CrossRef]

Caplen, J. E.

Chenevier, M.

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[CrossRef] [PubMed]

De Geronimo, G.

Degen, C.

J.-L. Vey, C. Degen, K. Auen, and W. ElsaBer, “Quantum noise and polarization properties of vertical-cavity surface-emitting lasers,” Phys. Rev. A 60, 3284–3295 (1999).
[CrossRef]

Digonnet, M. J. F.

Dong, L.

ElsaBer, W.

J.-L. Vey, C. Degen, K. Auen, and W. ElsaBer, “Quantum noise and polarization properties of vertical-cavity surface-emitting lasers,” Phys. Rev. A 60, 3284–3295 (1999).
[CrossRef]

Falquier, D. G.

Francois, P. L.

F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
[CrossRef]

P. LeBoudec, F. Sanchez, C. Jaouen, P. L. Francois, J. F. Bayon, and G. Stephan, “Antiphase dynamics and chaos in self-pulsing erbium-doped fiber laser,” Opt. Lett. 18, 1890–1892 (1993).
[CrossRef]

Gilbert, S. L.

Hatori, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

Hayashi, Y.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

Hotate, K.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE J. Lightwave Technol. 16, 661–669 (1998).
[CrossRef]

Hsu, K.

Hunkemeier, J.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, “Low-frequency dynamics of a Nd-doped glass laser,” Phys. Rev. A 64, 023816 (2001).
[CrossRef]

Iga, K.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

Inoue, S.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992).
[CrossRef] [PubMed]

James, G.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett. 65, 1749–1752 (1990).
[CrossRef] [PubMed]

Jaouen, C.

Khanin, Y. I.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, “Low-frequency dynamics of a Nd-doped glass laser,” Phys. Rev. A 64, 023816 (2001).
[CrossRef]

Kikuchi, K.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE J. Lightwave Technol. 16, 661–669 (1998).
[CrossRef]

Koyama, F.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

Kringlebotn, J. T.

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Corrections to modeling of polarization mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 35, 1097–1100 (1999).
[CrossRef]

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Modeling of polarization-mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

Lacot, E.

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[CrossRef] [PubMed]

Laporta, P.

Lauer, R. B.

C. B. Su, J. Schlafer, and R. B. Lauer, “Explanation of low frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[CrossRef]

LeBoudec, P.

F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
[CrossRef]

P. LeBoudec, F. Sanchez, C. Jaouen, P. L. Francois, J. F. Bayon, and G. Stephan, “Antiphase dynamics and chaos in self-pulsing erbium-doped fiber laser,” Opt. Lett. 18, 1890–1892 (1993).
[CrossRef]

LeFlohic, M.

F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
[CrossRef]

Loh, W. H.

Lovseth, S. W.

S. W. Lovseth and D. Y. Stepanov, “Dynamic analysis of multiple wavelength DFB fiber lasers,” IEEE J. Quantum Electron. 37, 1237–1245 (2001).
[CrossRef]

Lugiato, L. A.

M. Travagnin and L. A. Lugiato, “Microscopic model of quantum noise in single-mode semiconductor lasers,” Phys. Rev. A 62, 043813 (2000).
[CrossRef]

Machida, S.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992).
[CrossRef] [PubMed]

Mazurczyk, V.

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572–584 (1996).
[CrossRef]

Minelly, J. D.

Mirasso, C. R.

J. Mulet, C. R. Mirasso, and M. San Miguel, “Polarization resolved intensity noise in vertical-cavity surface-emitting lasers,” Phys. Rev. A 64, 023817 (2001).
[CrossRef]

Mukaihara, T.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

Mulet, J.

J. Mulet, C. R. Mirasso, and M. San Miguel, “Polarization resolved intensity noise in vertical-cavity surface-emitting lasers,” Phys. Rev. A 64, 023817 (2001).
[CrossRef]

Ohnoki, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

Ohzu, H.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992).
[CrossRef] [PubMed]

Payne, D. N.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

Peters, B.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, “Low-frequency dynamics of a Nd-doped glass laser,” Phys. Rev. A 64, 023816 (2001).
[CrossRef]

Raja, M. Y. A.

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spectral properties of ion-implanted and oxide-confined VCSELs,” J. Opt. Eng., 41, 704–710 (2002).
[CrossRef]

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spatial-mode behavior of short-wavelength VCSELs,” J. Opt. Laser Technol. 34, 129–134 (2002).
[CrossRef]

Reekie, L.

L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22, 694–696 (1997).
[CrossRef] [PubMed]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

Ronnekleiv, E.

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Corrections to modeling of polarization mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 35, 1097–1100 (1999).
[CrossRef]

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Modeling of polarization-mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998).
[CrossRef]

Roy, R.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett. 65, 1749–1752 (1990).
[CrossRef] [PubMed]

San Miguel, M.

J. Mulet, C. R. Mirasso, and M. San Miguel, “Polarization resolved intensity noise in vertical-cavity surface-emitting lasers,” Phys. Rev. A 64, 023817 (2001).
[CrossRef]

Sanchez, F.

F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
[CrossRef]

P. LeBoudec, F. Sanchez, C. Jaouen, P. L. Francois, J. F. Bayon, and G. Stephan, “Antiphase dynamics and chaos in self-pulsing erbium-doped fiber laser,” Opt. Lett. 18, 1890–1892 (1993).
[CrossRef]

Schlafer, J.

C. B. Su, J. Schlafer, and R. B. Lauer, “Explanation of low frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[CrossRef]

Shaw, H. J.

Stepanov, D. Y.

S. W. Lovseth and D. Y. Stepanov, “Dynamic analysis of multiple wavelength DFB fiber lasers,” IEEE J. Quantum Electron. 37, 1237–1245 (2001).
[CrossRef]

Stephan, G.

Stephan, G. M.

F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
[CrossRef]

Stoeckel, F.

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[CrossRef] [PubMed]

Su, C. B.

C. B. Su, J. Schlafer, and R. B. Lauer, “Explanation of low frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[CrossRef]

Svalgaard, M.

Svelto, O.

Taccheo, S.

Takushima, Y.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE J. Lightwave Technol. 16, 661–669 (1998).
[CrossRef]

Townsend, J. E.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

Travagnin, M.

M. Travagnin and L. A. Lugiato, “Microscopic model of quantum noise in single-mode semiconductor lasers,” Phys. Rev. A 62, 043813 (2000).
[CrossRef]

van Exter, M. P.

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser,” Phys. Rev. A 60, 4105–4113 (1999).
[CrossRef]

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191–4205 (1998).
[CrossRef]

Vey, J.-L.

J.-L. Vey, C. Degen, K. Auen, and W. ElsaBer, “Quantum noise and polarization properties of vertical-cavity surface-emitting lasers,” Phys. Rev. A 60, 3284–3295 (1999).
[CrossRef]

Vienne, G. G.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

Wagener, J. L.

Wang, C. X.

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spatial-mode behavior of short-wavelength VCSELs,” J. Opt. Laser Technol. 34, 129–134 (2002).
[CrossRef]

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spectral properties of ion-implanted and oxide-confined VCSELs,” J. Opt. Eng., 41, 704–710 (2002).
[CrossRef]

Wiesenfeld, K.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett. 65, 1749–1752 (1990).
[CrossRef] [PubMed]

Willemsen, M. B.

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser,” Phys. Rev. A 60, 4105–4113 (1999).
[CrossRef]

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191–4205 (1998).
[CrossRef]

Woerdman, J. P.

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser,” Phys. Rev. A 60, 4105–4113 (1999).
[CrossRef]

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191–4205 (1998).
[CrossRef]

Wysocki, P.

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572–584 (1996).
[CrossRef]

Yamada, M.

M. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. 7, 1052–1059 (1986).
[CrossRef]

Yamamoto, Y.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992).
[CrossRef] [PubMed]

Yamashita, S.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE J. Lightwave Technol. 16, 661–669 (1998).
[CrossRef]

S. Yamashita and K. Hsu, “Single-frequency, single-polarization operation of tunable miniature erbium:ytterbium fiber Fabry–Perot lasers by use of self-injection locking,” Opt. Lett. 23, 1200–1202 (1998).
[CrossRef]

Zervas, M. N.

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Corrections to modeling of polarization mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 35, 1097–1100 (1999).
[CrossRef]

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Modeling of polarization-mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. B. Su, J. Schlafer, and R. B. Lauer, “Explanation of low frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[CrossRef]

Electron. Lett. (1)

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-efficient, low-noise grating-feedback Er:Yb codoped fibre laser,” Electron. Lett. 30, 972–973 (1994).
[CrossRef]

IEEE J. Lightwave Technol. (1)

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE J. Lightwave Technol. 16, 661–669 (1998).
[CrossRef]

IEEE J. Quantum Electron. (5)

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Modeling of polarization-mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998).
[CrossRef]

E. Ronnekleiv, M. N. Zervas, and J. T. Kringlebotn, “Corrections to modeling of polarization mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 35, 1097–1100 (1999).
[CrossRef]

S. W. Lovseth and D. Y. Stepanov, “Dynamic analysis of multiple wavelength DFB fiber lasers,” IEEE J. Quantum Electron. 37, 1237–1245 (2001).
[CrossRef]

F. Sanchez, M. LeFlohic, G. M. Stephan, P. LeBoudec, and P. L. Francois, “Quasi-periodic route to chaos in erbium-doped fiber laser,” IEEE J. Quantum Electron. 31, 481–488 (1995).
[CrossRef]

M. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. 7, 1052–1059 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Excess intensity noise originated from polarization fluctuation in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1113–1115 (1995).
[CrossRef]

J. Lightwave Technol. (2)

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572–584 (1996).
[CrossRef]

J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller matrix formalism for modeling polarization effects in erbium-doped fiber,” J. Lightwave Technol. 16, 200–206 (1998).
[CrossRef]

J. Opt. Eng. (1)

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spectral properties of ion-implanted and oxide-confined VCSELs,” J. Opt. Eng., 41, 704–710 (2002).
[CrossRef]

J. Opt. Laser Technol. (1)

M. Y. A. Raja, A. Al-Dwayyan, Y. Cao, and C. X. Wang, “Polarization and spatial-mode behavior of short-wavelength VCSELs,” J. Opt. Laser Technol. 34, 129–134 (2002).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (8)

M. Travagnin and L. A. Lugiato, “Microscopic model of quantum noise in single-mode semiconductor lasers,” Phys. Rev. A 62, 043813 (2000).
[CrossRef]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992).
[CrossRef] [PubMed]

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191–4205 (1998).
[CrossRef]

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser,” Phys. Rev. A 60, 4105–4113 (1999).
[CrossRef]

J.-L. Vey, C. Degen, K. Auen, and W. ElsaBer, “Quantum noise and polarization properties of vertical-cavity surface-emitting lasers,” Phys. Rev. A 60, 3284–3295 (1999).
[CrossRef]

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, “Low-frequency dynamics of a Nd-doped glass laser,” Phys. Rev. A 64, 023816 (2001).
[CrossRef]

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[CrossRef] [PubMed]

J. Mulet, C. R. Mirasso, and M. San Miguel, “Polarization resolved intensity noise in vertical-cavity surface-emitting lasers,” Phys. Rev. A 64, 023817 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett. 65, 1749–1752 (1990).
[CrossRef] [PubMed]

Other (1)

D. C. Kilper, K. Croussore, E. Rowell, and M. Y. A. Raja, “Polarization dependent intensity noise in Er/Yb codoped fiber lasers,” in Conference on Lasers and Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup of the fiber laser: FL, active fiber gain medium and bulk mirrors; Det, InGaAs photodiode; Amp, two-stage (up to 40-dB) amplification; RFSA, radio-frequency spectrum analyzer.

Fig. 2
Fig. 2

RIN spectra for the fiber laser without polarization projection. Pump rates (normalized to threshold) are 0.15, 2.0, and 4.7. The dominant feature is the ROR, RIN values shown are relative to the carrier.

Fig. 3
Fig. 3

RIN spectrum obtained when a single linear polarization is analyzed, confirmed by absence of the 1.7-GHz beat note.

Fig. 4
Fig. 4

Amplitude of the PDR versus polarizer angle for one complete polarizer rotation.

Fig. 5
Fig. 5

Frequency of the polarization-dependent resonance (PDR) and normal relaxation oscillation resonance (ROR) as a function of fiber laser output power. The ROR exhibits the expected square-root dependence, while the PDR varies linearly.

Fig. 6
Fig. 6

PDR frequency versus square of the ROR frequency, normalized to 10,000 kHz2. The slope τs is approximately 1×10-6 in units of seconds.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΩPDR=(α/2γs)ΩR2,

Metrics