Abstract

The propagation of a focused femtosecond laser pulse under the coupled effects of self-focusing and plasma defocusing in a gas beam-delivery medium is investigated. The results show that a focused beam profile can be dramatically distorted in air but that this distortion can be minimized by use of an inert gas, particularly helium, to deliver the beam. Model predictions are in good agreement with previous experimental results for femtosecond laser micromachining of a copper sample in four gas environments: air, nitrogen, neon, and helium at ambient pressure. The best machining quality was obtained in helium; the worst, in air.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Femtosecond snapshot imaging of propagating light itself

Makoto Hosoda, Shin-ichiro Aoshima, Masatoshi Fujimoto, and Yutaka Tsuchiya
Appl. Opt. 41(12) 2308-2317 (2002)

Infrared femtosecond light filaments in air: simulations and experiments

Arnaud Couairon, Stelios Tzortzakis, Luc Bergé, Michel Franco, Bernard Prade, and André Mysyrowicz
J. Opt. Soc. Am. B 19(5) 1117-1131 (2002)

Single-shot measurement of laser-induced double step ionization of helium

K. Y. Kim, I. Alexeev, and H. M. Milchberg
Opt. Express 10(26) 1563-1572 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription