Abstract

The propagation of a focused femtosecond laser pulse under the coupled effects of self-focusing and plasma defocusing in a gas beam-delivery medium is investigated. The results show that a focused beam profile can be dramatically distorted in air but that this distortion can be minimized by use of an inert gas, particularly helium, to deliver the beam. Model predictions are in good agreement with previous experimental results for femtosecond laser micromachining of a copper sample in four gas environments: air, nitrogen, neon, and helium at ambient pressure. The best machining quality was obtained in helium; the worst, in air.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  2. J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001).
    [CrossRef]
  3. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
    [CrossRef]
  4. P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).
  5. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
    [CrossRef] [PubMed]
  6. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
    [CrossRef] [PubMed]
  7. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
    [CrossRef]
  8. S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
    [CrossRef]
  9. H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
    [CrossRef]
  10. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).
    [CrossRef]
  11. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
    [CrossRef]
  12. P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
    [CrossRef]
  13. C. H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3131 (2001).
    [CrossRef]
  14. C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 91, 2530–2536 (2002).
    [CrossRef]
  15. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
    [CrossRef]
  16. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
    [CrossRef]
  17. J. Sun and J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89, 8219–8224 (2001).
    [CrossRef]
  18. L. Walker, R. Maynard, and W. Clark, “Atmospheric affects on ultrashort-pulsed material processing,” in ICALEO 2002 (Laser Institute of America, Orlando, Fla., 2002), p. M702.
  19. A. E. Siegman, Lasers (University Science, Sausalito, Calif., 1986).
  20. S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
    [CrossRef]
  21. P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211–4232 (1996).
    [CrossRef]
  22. S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330–335 (1994).
    [CrossRef]
  23. A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
    [CrossRef]
  24. T.-C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB (Elsevier, New York, 2001).
  25. A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1992).
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  27. T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. 2. Numerical, nonlinear Schrödinger Equation,” J. Comput. Phys. 55, 203–230 (1984).
    [CrossRef]
  28. S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
    [CrossRef]
  29. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  30. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084–1090 (1992).
    [CrossRef] [PubMed]
  31. S. F. J. Larochelle, A. Talebpour, and S. L. Chin, “Coulomb effect in multiphoton ionization of rare-gas atoms,” J. Phys. B 31, 1215–1224 (1998).
    [CrossRef]
  32. A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).
  33. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
    [CrossRef]
  34. D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999).
    [CrossRef]
  35. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75 ed. (CRC, Boca Raton, Fla., 1994).
  36. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [CrossRef]
  37. X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993).
    [CrossRef]

2003 (2)

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
[CrossRef]

P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).

2002 (3)

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 91, 2530–2536 (2002).
[CrossRef]

2001 (4)

J. Sun and J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89, 8219–8224 (2001).
[CrossRef]

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001).
[CrossRef]

S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
[CrossRef]

C. H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3131 (2001).
[CrossRef]

2000 (1)

H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
[CrossRef]

1999 (3)

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[CrossRef]

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999).
[CrossRef]

1998 (4)

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

S. F. J. Larochelle, A. Talebpour, and S. L. Chin, “Coulomb effect in multiphoton ionization of rare-gas atoms,” J. Phys. B 31, 1215–1224 (1998).
[CrossRef]

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

1997 (5)

1996 (3)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211–4232 (1996).
[CrossRef]

E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[CrossRef] [PubMed]

1994 (1)

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330–335 (1994).
[CrossRef]

1993 (1)

X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993).
[CrossRef]

1992 (1)

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084–1090 (1992).
[CrossRef] [PubMed]

1984 (1)

T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. 2. Numerical, nonlinear Schrödinger Equation,” J. Comput. Phys. 55, 203–230 (1984).
[CrossRef]

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Ablowitz, M. J.

T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. 2. Numerical, nonlinear Schrödinger Equation,” J. Comput. Phys. 55, 203–230 (1984).
[CrossRef]

Akozbek, N.

S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
[CrossRef]

Altucci, C.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Amoruso, S.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Armenante, M.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Bhaskar, S.

D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999).
[CrossRef]

Bonnaud, G.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Bowden, C. M.

S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
[CrossRef]

Brodeur, A.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[CrossRef] [PubMed]

Bruzzese, R.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Burnett, K.

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084–1090 (1992).
[CrossRef] [PubMed]

Chan, W. T.

X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993).
[CrossRef]

Chichkov, B. N.

Chien, C. Y.

Chin, S. L.

S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
[CrossRef]

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[CrossRef]

S. F. J. Larochelle, A. Talebpour, and S. L. Chin, “Coulomb effect in multiphoton ionization of rare-gas atoms,” J. Phys. B 31, 1215–1224 (1998).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[CrossRef] [PubMed]

Chiron, A.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Curley, P. F.

De Lisio, C.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Dumitru, G.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
[CrossRef]

Esarey, E.

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211–4232 (1996).
[CrossRef]

Fan, C. H.

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 91, 2530–2536 (2002).
[CrossRef]

C. H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3131 (2001).
[CrossRef]

Franco, M.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Franco, M. A.

Grillon, G.

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Horvath, C.

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Ilkov, F. A.

Jacobs, H.

Juhasz, T.

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Kamlage, G.

H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
[CrossRef]

Kandidov, V. P.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[CrossRef] [PubMed]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

Kosareva, O. G.

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[CrossRef]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[CrossRef] [PubMed]

Krall, J.

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211–4232 (1996).
[CrossRef]

Lamouroux, B.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Lange, R.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Larochelle, S. F. J.

S. F. J. Larochelle, A. Talebpour, and S. L. Chin, “Coulomb effect in multiphoton ionization of rare-gas atoms,” J. Phys. B 31, 1215–1224 (1998).
[CrossRef]

Lim, L. E. N.

P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).

Liu, X.

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Loesel, F.

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Longtin, J. P.

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 91, 2530–2536 (2002).
[CrossRef]

C. H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3131 (2001).
[CrossRef]

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001).
[CrossRef]

J. Sun and J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89, 8219–8224 (2001).
[CrossRef]

Mao, X. L.

X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993).
[CrossRef]

Marine, W.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
[CrossRef]

Mlejnek, M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Moloney, J. V.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

Momma, C.

H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).
[CrossRef]

Mourou, G.

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Mysyrowicz, A.

Ngoi, B. K. A.

P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).

Nibbering, E. T. J.

Nolte, S.

H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 2716–2722 (1997).
[CrossRef]

Noojin, G. D.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

Norris, P. M.

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001).
[CrossRef]

Ostendorf, A.

H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
[CrossRef]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Petit, S.

S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
[CrossRef]

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[CrossRef]

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Prade, B.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Prade, B. S.

Pronko, P. P.

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Proulx, A.

S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
[CrossRef]

Rae, S. C.

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330–335 (1994).
[CrossRef]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084–1090 (1992).
[CrossRef] [PubMed]

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Riazuelo, G.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Ripoche, J. F.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

Roach, W. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

Romano, V.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
[CrossRef]

Russo, R. E.

X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993).
[CrossRef]

Salin, F.

Sentis, M.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
[CrossRef]

Shannon, M. A.

X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993).
[CrossRef]

Singh, P.

D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999).
[CrossRef]

Spinelli, N.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Sprangle, P.

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211–4232 (1996).
[CrossRef]

Stanley, P.

P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).

Subbarao, D.

D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999).
[CrossRef]

Sun, J.

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 91, 2530–2536 (2002).
[CrossRef]

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001).
[CrossRef]

J. Sun and J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89, 8219–8224 (2001).
[CrossRef]

Taha, T. R.

T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. 2. Numerical, nonlinear Schrödinger Equation,” J. Comput. Phys. 55, 203–230 (1984).
[CrossRef]

Talebpour, A.

S. F. J. Larochelle, A. Talebpour, and S. L. Chin, “Coulomb effect in multiphoton ionization of rare-gas atoms,” J. Phys. B 31, 1215–1224 (1998).
[CrossRef]

Terentev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Thomas, R. J.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

Tonshoff, H. K.

H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
[CrossRef]

Tunnermann, A.

Uma, R.

D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999).
[CrossRef]

Vanrompay, P. A.

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Velotta, R.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Venkatakrishnan, K.

P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).

Wang, X.

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Weber, H. P.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
[CrossRef]

Wellegehausen, B.

Welling, H.

Wright, E. M.

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Surf. Sci. (3)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Ablation of carbide materials with femtosecond pulses,” Appl. Surf. Sci. 205, 80–85 (2003).
[CrossRef]

S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186, 358–363 (2002).
[CrossRef]

Eur. Phys. J. D (1)

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, and A. Mysyrowicz, “Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases,” Eur. Phys. J. D 6, 383–396 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[CrossRef]

J. Appl. Phys. (3)

J. Sun and J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” J. Appl. Phys. 89, 8219–8224 (2001).
[CrossRef]

C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys. 91, 2530–2536 (2002).
[CrossRef]

X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, “Plasma shielding during picosecond laser sampling of solid materials by ablation in He versus Ar atmosphere,” J. Appl. Phys. 74, 4915–4922 (1993).
[CrossRef]

J. Comput. Phys. (1)

T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. 2. Numerical, nonlinear Schrödinger Equation,” J. Comput. Phys. 55, 203–230 (1984).
[CrossRef]

J. Laser Appl. (1)

H. K. Tonshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12, 23–27 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Sun, J. P. Longtin, and P. M. Norris, “Ultrafast laser micromachining of silica aerogels,” J. Non-Cryst. Solids 281, 39–47 (2001).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. L. Chin, A. Brodeur, S. Petit, O. G. Kosareva, and V. P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

S. F. J. Larochelle, A. Talebpour, and S. L. Chin, “Coulomb effect in multiphoton ionization of rare-gas atoms,” J. Phys. B 31, 1215–1224 (1998).
[CrossRef]

J. Plasma Phys. (1)

D. Subbarao, P. Singh, R. Uma, and S. Bhaskar, “Computer simulation of laser-beam self-focusing in a plasma,” J. Plasma Phys. 61, 449–467 (1999).
[CrossRef]

Lasers Eng. (1)

P. Stanley, K. Venkatakrishnan, L. E. N. Lim, and B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).

Opt. Commun. (2)

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330–335 (1994).
[CrossRef]

S. L. Chin, N. Akozbek, A. Proulx, S. Petit, and C. M. Bowden, “Transverse ring formation of a focused femtosecond laser pulse propagating in air,” Opt. Commun. 188, 181–186 (2001).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084–1090 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. P. Pronko, P. A. Vanrompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Phys. Rev. E (2)

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

P. Sprangle, E. Esarey, and J. Krall, “Self-guiding and stability of intense optical beams in gases undergoing ionization,” Phys. Rev. E 54, 4211–4232 (1996).
[CrossRef]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155–248 (1997).
[CrossRef]

Sov. Phys. JETP (2)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Other (6)

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75 ed. (CRC, Boca Raton, Fla., 1994).

T.-C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB (Elsevier, New York, 2001).

A. C. Newell and J. V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, Calif., 1992).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

L. Walker, R. Maynard, and W. Clark, “Atmospheric affects on ultrashort-pulsed material processing,” in ICALEO 2002 (Laser Institute of America, Orlando, Fla., 2002), p. M702.

A. E. Siegman, Lasers (University Science, Sausalito, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Typical beam-delivery geometry.

Fig. 2
Fig. 2

Temporal Gaussian pulse profile.

Fig. 3
Fig. 3

Normalized intensity profile (x=0) at the focal point in air (9th, 13th, 15th, and 16th pulse slices are shown).

Fig. 4
Fig. 4

Normalized intensity profile (x=0) at the focal point in helium (16th, 18th, 20th, and 21st pulse slices are shown).

Fig. 5
Fig. 5

Normalized fluence profile at the focal point in vacuum (cross section at x=0).

Fig. 6
Fig. 6

Model prediction versus experimental results in air: (a) 2-D (cross section at x=0) normalized fluence profile at the focal point, (b) scanning-electron microscope image of a copper hole processed in air.

Fig. 7
Fig. 7

Model prediction versus experimental results in helium: (a) 2-D (cross section at x=0) normalized fluence profile at the focal point, (b) scanning-electron microscope image of a copper hole processed in helium.

Fig. 8
Fig. 8

Model prediction versus experimental results in nitrogen: (a) 2-D (cross section at x=0) normalized fluence profile at the focal point, (b) scanning-electron microscope image of a copper hole processed in nitrogen.

Fig. 9
Fig. 9

Model prediction versus experimental results in neon: (a) 2-D (cross section at x=0) normalized fluence profile at the focal point, (b) scanning-electron microscope image of a copper hole processed in neon.

Tables (2)

Tables Icon

Table 1 Physical Properties of Some Gases

Tables Icon

Table 2 Simulation Results

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n(I)=n0+n2I,
n=n0-(Ne/2Ncr),
n(I)=n0+Δn=n0+n2I-Ne2Ncr,
Az=j2k 2x2+2y2A,
Az=j2k 2x2+2y2A+jΔnkA,
Az=j2k 2x2+2y2A+jn2k|A|2A-j kNe2NcrA.
dNedt=WN0,
A(x, y, z=0, τ)=A0 exp-x2+y2w02exp-τ2τ02exp-j kr22f,
δAz=j(Lˆ+Nˆ)A,
Lˆ=12k 2x2+2y2
Az=Δzexpj 12LˆΔzexp(jNˆΔz)expj 12LˆΔzAz=0,
Az=ΔzFFT-1exp-jπ2K2Δzk×FFTexp(jNˆΔz)FFT-1exp-jπ2K2Δzk×FFT{Az=0},
F(x, y)=-I(x, y, t)dts=1Ns+1Is(x, y)Δt,
B=2πλ 0Ln2I(z)dz,

Metrics