Abstract

By use of the ν2 and 2ν2 bands of carbonyl sulfide (OCS), the high accuracy of the CO2 laser lines is transferred from 10 µm to the far-infrared region near 20 µm. Measurements were performed with a slightly modified Bruker IFS 120 HR spectrometer at the infrared laboratory of the University of Oulu. The effect of the pressure shift was reduced by measurement of the 2ν2 band with the CO2 laser band in a long-path cell with low sample pressures. With highly sensitive measurement, the absolute accuracy of the 2ν2 band center was reduced to 1.4×10-6 cm-1. Together with the accurate result for the 2ν2 band, measurement of the ν2 band with a resolution of 0.001 cm-1 and a signal-to-noise ratio of ∼150, accurate wave numbers in the region of the lower band can also be obtained. To the best of the author’s knowledge, the absolute accuracy of 3.9×10-6 cm-1 for the ν2 band center is the best ever reached in the region near 500 cm-1. New accurate wave number tables are presented for the bands 02000000 near 1047 cm-1 and 02000110 and 01100000 in the region from 495 to 555 cm-1. The most important factors that limit the performance of Fourier spectrometers in high-absolute-accuracy measurements are discussed. With systematic alignment methods these barriers have been overcome with the spectrometer used. An easy method to confirm the quality of a measured spectrum is presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985).
    [CrossRef]
  2. J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981).
    [CrossRef]
  3. J. S. Wells, F. R. Petersen, and A. G. Maki, “Heterodyne frequency measurements with a tunable diode laser-CO2 laser spectrometer: spectroscopic reference frequencies in the 9.5-μm band of carbonyl sulfide,” Appl. Opt. 18, 3567–3573 (1979).
    [CrossRef] [PubMed]
  4. V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
    [CrossRef]
  5. J. Kauppinen, T. Kärkkäinen, and E. Kyrö, “Correcting errors in the optical path difference in Fourier spectroscopy,” Appl. Opt. 17, 1587–1594 (1978).
    [CrossRef] [PubMed]
  6. J. Kauppinen and P. Saarinen, “Line-shape distortions inmisaligned cube corner interferometers,” Appl. Opt. 31, 69–74 (1992).
    [CrossRef] [PubMed]
  7. P. Raspollini, P. Ade, B. Carli, and M. Ridolfi, “Correction of instrument line-shape distortions in Fourier transform spectroscopy,” Appl. Opt. 37, 3697–3704 (1998).
    [CrossRef]
  8. M. Ahro, J. Kauppinen, and I. Salomaa, “Detection and correction of instrumental line-shape distortions in a Fourier spectroscopy,” Appl. Opt. 39, 6230–6237 (2002).
    [CrossRef]
  9. A. G. Maki and J. S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements,” Version 1.3 (National Institute of Standards and Technology, Gaithersburg, Md, 2 November, 2002). Available on line: http://physics.nist.gov/wavenum.
  10. G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
    [CrossRef]
  11. V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
    [CrossRef]
  12. V.-M. Horneman, “Instrumental and calculation methods for Fourier transform infrared spectroscopy and accurate standard spectra,” Acta Univ. Oulu A 239, 57–70 (1992).
  13. P. Saarinen and J. Kauppinen, “Spectral line-shape distortions in Michelson interferometers due to off-focus radiation source,” Appl. Opt. 31, 2353–2359 (1992).
    [CrossRef] [PubMed]
  14. J. Kauppinen and V.-M. Horneman, “Cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30, 2575–2578 (1991).
    [CrossRef] [PubMed]
  15. A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
    [CrossRef]
  16. T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
    [CrossRef]
  17. T. Ahonen, P. Karhu, and V.-M. Horneman, “An optimized White-type gas cell for the Bruker IFS 120 high resolution FTIR spectrometer,” presented at the Fifteenth Colloquium on High Resolution Molecular Spectroscopy, Glasgow, Scotland, 8–13 September, 1997.
  18. A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119, 233–266 (1986).
    [CrossRef]
  19. E. Schäfer and M. Winnewisser, “A broadband submillimeter wave spectrometer system with on-line microcomputer data analysis,” Ber. Bunsenges. Phys. Chem. 87, 237–334 (1983).

2003

V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
[CrossRef]

2002

1998

1997

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

1996

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

1994

A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
[CrossRef]

1992

J. Kauppinen and P. Saarinen, “Line-shape distortions inmisaligned cube corner interferometers,” Appl. Opt. 31, 69–74 (1992).
[CrossRef] [PubMed]

P. Saarinen and J. Kauppinen, “Spectral line-shape distortions in Michelson interferometers due to off-focus radiation source,” Appl. Opt. 31, 2353–2359 (1992).
[CrossRef] [PubMed]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

V.-M. Horneman, “Instrumental and calculation methods for Fourier transform infrared spectroscopy and accurate standard spectra,” Acta Univ. Oulu A 239, 57–70 (1992).

1991

1986

A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119, 233–266 (1986).
[CrossRef]

1985

K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985).
[CrossRef]

1983

E. Schäfer and M. Winnewisser, “A broadband submillimeter wave spectrometer system with on-line microcomputer data analysis,” Ber. Bunsenges. Phys. Chem. 87, 237–334 (1983).

1981

J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981).
[CrossRef]

1979

1978

Ade, P.

Ahonen, T.

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

Ahro, M.

Alanko, S.

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

Anttila, R.

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

Birk, M.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Bordé, Ch. J.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Brault, J. W.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Brown, L. R.

V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
[CrossRef]

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Carli, B.

P. Raspollini, P. Ade, B. Carli, and M. Ridolfi, “Correction of instrument line-shape distortions in Fourier transform spectroscopy,” Appl. Opt. 37, 3697–3704 (1998).
[CrossRef]

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Chou, C.-C.

A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
[CrossRef]

Chris Berner, D.

V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
[CrossRef]

Cole, A. R. H.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Dulick, M.

V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
[CrossRef]

Evenson, K. M.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
[CrossRef]

Fayt, A.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119, 233–266 (1986).
[CrossRef]

Guelachvili, G.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Hausamann, D.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Horneman, V.-M.

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, “Instrumental and calculation methods for Fourier transform infrared spectroscopy and accurate standard spectra,” Acta Univ. Oulu A 239, 57–70 (1992).

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

J. Kauppinen and V.-M. Horneman, “Cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30, 2575–2578 (1991).
[CrossRef] [PubMed]

K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985).
[CrossRef]

Johns, J. W. C.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Jolma, K.

K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985).
[CrossRef]

Kärkkäinen, T.

Kauppinen, J.

M. Ahro, J. Kauppinen, and I. Salomaa, “Detection and correction of instrumental line-shape distortions in a Fourier spectroscopy,” Appl. Opt. 39, 6230–6237 (2002).
[CrossRef]

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

J. Kauppinen and P. Saarinen, “Line-shape distortions inmisaligned cube corner interferometers,” Appl. Opt. 31, 69–74 (1992).
[CrossRef] [PubMed]

P. Saarinen and J. Kauppinen, “Spectral line-shape distortions in Michelson interferometers due to off-focus radiation source,” Appl. Opt. 31, 2353–2359 (1992).
[CrossRef] [PubMed]

J. Kauppinen and V.-M. Horneman, “Cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30, 2575–2578 (1991).
[CrossRef] [PubMed]

K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985).
[CrossRef]

J. Kauppinen, T. Kärkkäinen, and E. Kyrö, “Correcting errors in the optical path difference in Fourier spectroscopy,” Appl. Opt. 17, 1587–1594 (1978).
[CrossRef] [PubMed]

Koivusaari, M.

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

Kou, Q.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Kyrö, E.

Lafferty, W. J.

J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981).
[CrossRef]

Lahaye, J. G.

A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119, 233–266 (1986).
[CrossRef]

Maki, A. G.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
[CrossRef]

K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985).
[CrossRef]

J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981).
[CrossRef]

J. S. Wells, F. R. Petersen, and A. G. Maki, “Heterodyne frequency measurements with a tunable diode laser-CO2 laser spectrometer: spectroscopic reference frequencies in the 9.5-μm band of carbonyl sulfide,” Appl. Opt. 18, 3567–3573 (1979).
[CrossRef] [PubMed]

Malathy Devi, V.

V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
[CrossRef]

Narahari Rao, K.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Paso, R.

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

Petersen, F. R.

Raspollini, P.

Ridolfi, M.

Saarinen, P.

Salomaa, I.

Sattler, J. P.

J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981).
[CrossRef]

Schäfer, E.

E. Schäfer and M. Winnewisser, “A broadband submillimeter wave spectrometer system with on-line microcomputer data analysis,” Ber. Bunsenges. Phys. Chem. 87, 237–334 (1983).

Shy, J.-T.

A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
[CrossRef]

Smith, M. A. H.

V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
[CrossRef]

Tolonen, A.-M.

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

Toth, R. A.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Urban, W.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Valentin, A.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Vandenhaute, R.

A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119, 233–266 (1986).
[CrossRef]

Vergès, J.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Wagner, G.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Wappelhorst, M. H.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Wells, J. S.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

J. S. Wells, F. R. Petersen, and A. G. Maki, “Heterodyne frequency measurements with a tunable diode laser-CO2 laser spectrometer: spectroscopic reference frequencies in the 9.5-μm band of carbonyl sulfide,” Appl. Opt. 18, 3567–3573 (1979).
[CrossRef] [PubMed]

Winnewisser, B. P.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

Winnewisser, M.

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

E. Schäfer and M. Winnewisser, “A broadband submillimeter wave spectrometer system with on-line microcomputer data analysis,” Ber. Bunsenges. Phys. Chem. 87, 237–334 (1983).

Worchersky, T. L.

J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981).
[CrossRef]

Zink, L. R.

A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
[CrossRef]

Acta Univ. Oulu A

V.-M. Horneman, “Instrumental and calculation methods for Fourier transform infrared spectroscopy and accurate standard spectra,” Acta Univ. Oulu A 239, 57–70 (1992).

Appl. Opt.

Ber. Bunsenges. Phys. Chem.

E. Schäfer and M. Winnewisser, “A broadband submillimeter wave spectrometer system with on-line microcomputer data analysis,” Ber. Bunsenges. Phys. Chem. 87, 237–334 (1983).

J. Mol. Spectrosc.

K. Jolma, V.-M. Horneman, J. Kauppinen, and A. G. Maki, “Absolute OCS wavenumbers and analysis of bands in the region of the lowest fundamental ν2,” J. Mol. Spectrosc. 113, 167–174 (1985).
[CrossRef]

J. P. Sattler, T. L. Worchersky, A. G. Maki, and W. J. Lafferty, “Heterodyne frequency measurements of carbonyl sulfide near 1050 cm−1,” J. Mol. Spectrosc. 90, 460–466 (1981).
[CrossRef]

A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119, 233–266 (1986).
[CrossRef]

A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, “Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements,” J. Mol. Spectrosc. 167, 211–224 (1994).
[CrossRef]

T. Ahonen, S. Alanko, V.-M. Horneman, M. Koivusaari, R. Paso, A.-M. Tolonen, and R. Anttila, “A long path cell for the Fourier spectrometer Bruker IFS 120HR. Application to the weak ν12 and 3ν2 bands of carbon disulfide,” J. Mol. Spectrosc. 181, 279–286 (1997).
[CrossRef]

V.-M. Horneman, M. Koivusaari, A.-M. Tolonen, S. Alanko, R. Anttila, R. Paso, and T. Ahonen, “Updating OCS 2ν2 band for calibration purposes,” J. Mol. Spectrosc. 155, 298–306 (1992).
[CrossRef]

G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, and M. Winnewisser, “High resolution wavenumber standards for the infrared,” J. Mol. Spectrosc. 177, 164–179 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

V. Malathy Devi, D. Chris Berner, M. A. H. Smith, L. R. Brown, and M. Dulick, “Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands,” J. Quant. Spectrosc. Radiat. Transf. 73, 411–434 (2003).
[CrossRef]

Other

A. G. Maki and J. S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements,” Version 1.3 (National Institute of Standards and Technology, Gaithersburg, Md, 2 November, 2002). Available on line: http://physics.nist.gov/wavenum.

T. Ahonen, P. Karhu, and V.-M. Horneman, “An optimized White-type gas cell for the Bruker IFS 120 high resolution FTIR spectrometer,” presented at the Fifteenth Colloquium on High Resolution Molecular Spectroscopy, Glasgow, Scotland, 8–13 September, 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic diagram of the adjustable mount of the moving-mirror guides. The vertical and horizontal positions of the guides are adjusted with pairs of screws Sv and Sh. Vertical movement of the mount is prevented by screws Sf. G1 and G2 are the locations of the guides. C is the cable slot.

Fig. 2
Fig. 2

Schematic diagram of the control mount for the optics to expand the divergence of the adjustment laser: L1, focusing lens (f=10 mm; ϕ=6 mm); L2, diverging lens (f=8 mm; ϕ=6 mm); Al, aluminum; T, Teflon. The intermediate distance between L1 and L2 is adjusted with the two innermost cylinders, which have been provided with threads. The laser beam is centered, and its direction is aligned with two planar mirrors in front of the optics. The direction of the outgoing diverging beam is aligned with screw Sr1. The vertical position of planar mirror M is adjusted with Sr2, the focus position after L2, with Sr4. The latter screw adjusts the distance between the focus and the first spherical mirror of the spectrometer. The horizontal position of the focus is adjusted with screw Sr3.

Fig. 3
Fig. 3

Schematic diagram of the interferometer in the Bruker IFS-120 HR spectrometer. The radiation from the IR source and adjustment laser comes through the Jacquinot stop JS. M1 and M3 are planar mirrors; off-axis parabolic mirror M2 collimates the IR beam into the interferometer formed by beam splitter BS and fixed Mf and moving Mm cube corner mirrors. The location for the aperture disk used in the adjustments is AD. The movement of the mirror Mm and the data acquisition are controlled by laser Lc (control laser). The direction of laser Lc beam is aligned with planar mirror ML. Δd denotes a later shift in case of misalignment. S1 and S2 are extra screens used during alignment.

Fig. 4
Fig. 4

Simple method for checking alignments for the collimated beam in a Fourier spectrometer. The aperture disk is placed in the path of the collimated beam in front of the interferometer. The screen should be placed as far as possible along the path of the moving mirror.

Fig. 5
Fig. 5

Subbeams cut by the aperture disk on a screen placed as far as possible along the moving mirror’s path. Circles correspond to the round holes on the aperture disk: (a) ideal adjustment, (b) JS too far away, (c) JS too near, (d) incidence angle of the parabolic mirror too wide.

Fig. 6
Fig. 6

Symmetry of the peaks in the CO2 laser bands. In this measurement the incident angle of the collimating parabolic mirror was 2° below the nominal. The average foot symmetry (stars) is close to unity, and the derivative symmetry (circles) varies according to the width of the peak.

Fig. 7
Fig. 7

Difference between the observed peak position and those of Ref. 15 in the CO2 laser bands. The results are from the same measurement as for Fig. 6.

Fig. 8
Fig. 8

Symmetry of the peaks in the CO2 laser bands. The incident angle of the collimating parabolic mirror was 2° below the nominal angle, and the lateral shift of the moving mirror was a few millimeters at the end of the scan. The average foot symmetry (stars) is close to unity, and the average derivative symmetry (circles) is ∼0.7.

Fig. 9
Fig. 9

Derivative symmetry of the peaks in the OCS 2ν2 (dots) and CO2 9.4 µm laser (solid stars) bands. The symmetry indicates the ratio between the values of the maximum derivative at both sides of the peak. Peaks shown by solid stars were used in the calibration of the spectrum. Only the dot marked OCS lines were used in the fit. The other peaks (open circles and stars) were omitted because of their asymmetry or overlap.

Fig. 10
Fig. 10

Derivative symmetry of the peaks in the present measurement of the OCS ν2 band. Circles and stars denote lines of the P and R branches in bands 01100000 and 02000110, respectively. Open circles and stars were not accepted, either for the calibration or for the fit.

Fig. 11
Fig. 11

Overview plots of OCS 2ν2 and CO2 laser (marked with Δ) bands at 9.4 µm.

Fig. 12
Fig. 12

Detail from the beginning of the Q branch in OCS band 01100000.

Fig. 13
Fig. 13

Comparison of the CO2 laser lines reported here and in Ref. 15. Differences between calculated and reference and between observed and reference lines are marked by stars and circles, respectively. The observed peaks (open circles) were used in the calibration. Curves correspond to the total uncertainty of the calculated values. Solid and dotted curves correspond to 68% and 95% confidence limits, respectively, in this work. Note that all omitted peaks are not shown in this figure.

Fig. 14
Fig. 14

Comparison (filled circles) of the combination differences R(J-1)-P(J+1) from the present IR measurement of the 2ν2 band with the corresponding ground-state differences calculated from the MW results.18 Solid curves, uncertainty limits (this study with 68% confidence limits+uncertainty given in Ref. 18). Open circles, corresponding differences between Ref. 4 and the MW results.18

Fig. 15
Fig. 15

Differences (stars) of the peak positions in units of 10-6 cm-1 between the present study and Ref. 4. Solid curves, uncertainty limits in this study.

Fig. 16
Fig. 16

Comparison (stars) of the R(J-1)-P(J+1) differences in the ν2 band from the present study (IR) with the corresponding differences in the ground state calculated with the MW results.18 Solid curves, error limits (IR+MW uncertainty).

Fig. 17
Fig. 17

Comparison (stars) of the combination differences R(J)-P(J) between bands 02000110 and 02000000. The error limits (one Std+the CE) are plotted by solid curves. The dotted lines at high J values represent the error limits for hot band 2ν2ν2 in this J range suggested by the comparison.

Fig. 18
Fig. 18

Comparison of the calculated peak positions in units of 10-6 cm-1 in bands 01100000 (stars, upper curve) and 02000110 (open circles) between the present study and Ref. 8. Solid curves are the upper and lower uncertainty limits in this study for the lines in bands 01100000 and 02000110, respectively.

Tables (7)

Tables Icon

Table 1 Polynomial Coefficients (ai) from the Fit of OCS Band 02000000a

Tables Icon

Table 2 Calculated Wave Numbers (cm-1) in the 2ν2 Band with the Uncertainties (Unc) and Differences between Observed and Calculated Values (O-C) from the Eighth-Order Polynomial Fita

Tables Icon

Table 3 Polynomial Coefficients (ai) with Standard Errors from the Fit of Bands 01100000 and 02000110a

Tables Icon

Table 4 Calculated Wave Numbers (cm-1) of the 01100000 Band with Uncertainties (Unc) and Differences Between Observed and Calculated Values (O-C) from the Sixth-Order Polynomial Fita

Tables Icon

Table 5 Calculated Wave Numbers (cm-1) in the Q Branch of the 01100000 Band by the Second-Order Polynomial Fita

Tables Icon

Table 6 Calculated Wave Numbers (cm-1) of the 02000110 Band from the Eighth-Order Polynomial Fit with Uncertainties (Unc) and Differences between Observed and Calculated Values (O-C)a

Tables Icon

Table 7 Calculated Wave Numbers (cm-1) in the Q Branch of the 02000110 Band by the Second-Order Polynomial Fita

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δν=Δkν+kΔνe,
Δνe=δν/[s(S/N)pp],
Δk2Δν0a+Δν0b+Δν0cν0c,

Metrics