Abstract

The theoretical and experimental investigation of a new chiral second-harmonic generation technique that utilizes a counterpropagating optical geometry was conducted. The counterpropagating optical geometry employed here can effectively separate the chiral and achiral contributions to the SH emission, which cannot be easily accomplished under a copropagating geometry. The technique was applied to an experimental investigation of the molecular adsorption of (R)-(+)-1,1-bi-2-naphthol to a planar-supported lipid bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine. A strong chiral second-harmonic generation response was observed when a single enantiomer intercalated into the membrane, but showed no chiral response when equal concentrations of the enantiomers were present in the bilayer.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum, New York, 1996), p. 738.
  2. H. I. Yee, J. D. Byers, and J. M. Hicks, “,” Proc. SPIE 2125, 119–131 (1994).
    [CrossRef]
  3. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
    [CrossRef]
  4. J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68, 589–593 (1999).
    [CrossRef]
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  6. J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Total internal reflection second-harmonic generation: probing the alkane water interface,” Appl. Phys. A 59, 623–629 (1994).
    [CrossRef]
  7. P. Guyot-Sionnest and A. Tadjeddine, “Study of silver(111) and gold(111) electrodes by optical second-harmonic generation,” J. Chem. Phys. 92, 734–738 (1990).
    [CrossRef]
  8. G. L. Richmond, “Second harmonic generation studies of anionic adsorption on polycrystalline and single crystal silver surfaces,” Chem. Phys. Lett. 110, 571–575 (1984).
    [CrossRef]
  9. K. B. Eisenthal, “Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation,” Annu. Rev. Phys. Chem. 43, 627–661 (1992).
    [CrossRef]
  10. R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
    [CrossRef]
  11. D. A. Higgins and R. M. Corn, “Second harmonic generation studies of adsorption at a liquid-liquid electrochemical interface,” J. Phys. Chem. 97, 489–493 (1993).
    [CrossRef]
  12. S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
    [CrossRef]
  13. J. A. Giordmaine and P. M. Rentzepis, “Correlation of optical activity and nonlinear polarizability,” J. Chem. Phys. 64, 215–221 (1967).
  14. H. J. Simon and N. Bloembergen, “Second-harmonic light generation in crystals with natural optical activity,” Phys. Rev. 171, 1104–1114 (1968).
    [CrossRef]
  15. T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).
  16. A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).
  17. M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).
  18. J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99, 341–357 (1994).
    [CrossRef] [PubMed]
  19. J. D. Byers and J. M. Hicks, “Electronic spectral effects on chiral surface second harmonic generation,” Chem. Phys. Lett. 231, 216–224 (1994).
    [CrossRef]
  20. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonicgeneration analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
    [CrossRef]
  21. J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
    [CrossRef]
  22. G. J. Simpson, “Structural origins of circular dichroism in surface second harmonic generation,” J. Chem. Phys. 117, 3398–3410 (2002).
    [CrossRef]
  23. M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
    [CrossRef]
  24. B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
    [CrossRef]
  25. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  26. P. Guyot-Sionnest, Y. R. Shen, and T. F. Heinz, “Comments on ‘Determination of the nonlinear optical susceptibility χ(2) of surface layers’ by B. Dick et al.,” Appl. Phys. B, 237–238 (1987).
    [CrossRef]
  27. J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Studies of alkane/water interfaces by total internal reflection second harmonic generation,” J. Phys. Chem. 98, 9688–9692 (1994).
    [CrossRef]
  28. H. M. McConnell, T. H. Watts, and R. M. Weis, “Supported planar membranes in studies of cell-cell recognition in the immune system,” Biochim. Biophys. Acta 864, 95–106 (1986).
    [CrossRef] [PubMed]
  29. M. A. Kriech and J. C. Conboy, “Measuring melittin binding to planar supported lipid bilayers by second harmonic generation,” Anal. Chim. Acta. 75, 6621–6628 (2003).
  30. M. A. Kriech and J. C. Conboy, “Label-free chiral detection of melittin binding to a membrane,” J. Am. Chem. Soc. 125, 1148–1149 (2003).
    [CrossRef] [PubMed]
  31. M. Florsheimer, “Second-harmonic microscopy. A new tool for the remote sensing of interfaces,” Phys. Status Solidi A 173, 15–27 (1999).
    [CrossRef]

2003 (2)

M. A. Kriech and J. C. Conboy, “Measuring melittin binding to planar supported lipid bilayers by second harmonic generation,” Anal. Chim. Acta. 75, 6621–6628 (2003).

M. A. Kriech and J. C. Conboy, “Label-free chiral detection of melittin binding to a membrane,” J. Am. Chem. Soc. 125, 1148–1149 (2003).
[CrossRef] [PubMed]

2002 (1)

G. J. Simpson, “Structural origins of circular dichroism in surface second harmonic generation,” J. Chem. Phys. 117, 3398–3410 (2002).
[CrossRef]

1999 (3)

T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68, 589–593 (1999).
[CrossRef]

M. Florsheimer, “Second-harmonic microscopy. A new tool for the remote sensing of interfaces,” Phys. Status Solidi A 173, 15–27 (1999).
[CrossRef]

1998 (1)

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

1997 (1)

M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
[CrossRef]

1996 (1)

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).

1994 (7)

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99, 341–357 (1994).
[CrossRef] [PubMed]

J. D. Byers and J. M. Hicks, “Electronic spectral effects on chiral surface second harmonic generation,” Chem. Phys. Lett. 231, 216–224 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonicgeneration analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
[CrossRef]

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Total internal reflection second-harmonic generation: probing the alkane water interface,” Appl. Phys. A 59, 623–629 (1994).
[CrossRef]

H. I. Yee, J. D. Byers, and J. M. Hicks, “,” Proc. SPIE 2125, 119–131 (1994).
[CrossRef]

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Studies of alkane/water interfaces by total internal reflection second harmonic generation,” J. Phys. Chem. 98, 9688–9692 (1994).
[CrossRef]

1993 (2)

D. A. Higgins and R. M. Corn, “Second harmonic generation studies of adsorption at a liquid-liquid electrochemical interface,” J. Phys. Chem. 97, 489–493 (1993).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

1992 (1)

K. B. Eisenthal, “Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation,” Annu. Rev. Phys. Chem. 43, 627–661 (1992).
[CrossRef]

1990 (1)

P. Guyot-Sionnest and A. Tadjeddine, “Study of silver(111) and gold(111) electrodes by optical second-harmonic generation,” J. Chem. Phys. 92, 734–738 (1990).
[CrossRef]

1988 (1)

S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
[CrossRef]

1986 (1)

H. M. McConnell, T. H. Watts, and R. M. Weis, “Supported planar membranes in studies of cell-cell recognition in the immune system,” Biochim. Biophys. Acta 864, 95–106 (1986).
[CrossRef] [PubMed]

1985 (1)

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
[CrossRef]

1984 (2)

G. L. Richmond, “Second harmonic generation studies of anionic adsorption on polycrystalline and single crystal silver surfaces,” Chem. Phys. Lett. 110, 571–575 (1984).
[CrossRef]

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
[CrossRef]

1968 (1)

H. J. Simon and N. Bloembergen, “Second-harmonic light generation in crystals with natural optical activity,” Phys. Rev. 171, 1104–1114 (1968).
[CrossRef]

1967 (1)

J. A. Giordmaine and P. M. Rentzepis, “Correlation of optical activity and nonlinear polarizability,” J. Chem. Phys. 64, 215–221 (1967).

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bloembergen, N.

H. J. Simon and N. Bloembergen, “Second-harmonic light generation in crystals with natural optical activity,” Phys. Rev. 171, 1104–1114 (1968).
[CrossRef]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bosch, M.

M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
[CrossRef]

Brillert, C.

M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
[CrossRef]

Byers, J. D.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
[CrossRef]

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99, 341–357 (1994).
[CrossRef] [PubMed]

J. D. Byers and J. M. Hicks, “Electronic spectral effects on chiral surface second harmonic generation,” Chem. Phys. Lett. 231, 216–224 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonicgeneration analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

H. I. Yee, J. D. Byers, and J. M. Hicks, “,” Proc. SPIE 2125, 119–131 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Conboy, J. C.

M. A. Kriech and J. C. Conboy, “Measuring melittin binding to planar supported lipid bilayers by second harmonic generation,” Anal. Chim. Acta. 75, 6621–6628 (2003).

M. A. Kriech and J. C. Conboy, “Label-free chiral detection of melittin binding to a membrane,” J. Am. Chem. Soc. 125, 1148–1149 (2003).
[CrossRef] [PubMed]

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Studies of alkane/water interfaces by total internal reflection second harmonic generation,” J. Phys. Chem. 98, 9688–9692 (1994).
[CrossRef]

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Total internal reflection second-harmonic generation: probing the alkane water interface,” Appl. Phys. A 59, 623–629 (1994).
[CrossRef]

Corn, R. M.

D. A. Higgins and R. M. Corn, “Second harmonic generation studies of adsorption at a liquid-liquid electrochemical interface,” J. Phys. Chem. 97, 489–493 (1993).
[CrossRef]

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
[CrossRef]

Daschbach, J. L.

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Total internal reflection second-harmonic generation: probing the alkane water interface,” Appl. Phys. A 59, 623–629 (1994).
[CrossRef]

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Studies of alkane/water interfaces by total internal reflection second harmonic generation,” J. Phys. Chem. 98, 9688–9692 (1994).
[CrossRef]

Dick, B.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Eisenthal, K. B.

K. B. Eisenthal, “Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation,” Annu. Rev. Phys. Chem. 43, 627–661 (1992).
[CrossRef]

Florsheimer, M.

M. Florsheimer, “Second-harmonic microscopy. A new tool for the remote sensing of interfaces,” Phys. Status Solidi A 173, 15–27 (1999).
[CrossRef]

M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
[CrossRef]

Fuchs, H.

M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
[CrossRef]

Gierulski, A.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine and P. M. Rentzepis, “Correlation of optical activity and nonlinear polarizability,” J. Chem. Phys. 64, 215–221 (1967).

Grubb, S. G.

S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
[CrossRef]

Guyot-Sionnest, P.

P. Guyot-Sionnest and A. Tadjeddine, “Study of silver(111) and gold(111) electrodes by optical second-harmonic generation,” J. Chem. Phys. 92, 734–738 (1990).
[CrossRef]

Hicks, J. M.

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68, 589–593 (1999).
[CrossRef]

H. I. Yee, J. D. Byers, and J. M. Hicks, “,” Proc. SPIE 2125, 119–131 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonicgeneration analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

J. D. Byers and J. M. Hicks, “Electronic spectral effects on chiral surface second harmonic generation,” Chem. Phys. Lett. 231, 216–224 (1994).
[CrossRef]

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99, 341–357 (1994).
[CrossRef] [PubMed]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Higgins, D. A.

D. A. Higgins and R. M. Corn, “Second harmonic generation studies of adsorption at a liquid-liquid electrochemical interface,” J. Phys. Chem. 97, 489–493 (1993).
[CrossRef]

Kauranen, M.

T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).

Kim, M. W.

S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
[CrossRef]

Kriech, M. A.

M. A. Kriech and J. C. Conboy, “Measuring melittin binding to planar supported lipid bilayers by second harmonic generation,” Anal. Chim. Acta. 75, 6621–6628 (2003).

M. A. Kriech and J. C. Conboy, “Label-free chiral detection of melittin binding to a membrane,” J. Am. Chem. Soc. 125, 1148–1149 (2003).
[CrossRef] [PubMed]

Langeveld-Voss, B. M. W.

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

Levenson, M. D.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
[CrossRef]

Ma, L.

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

Maki, J. J.

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).

Marowsky, G.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
[CrossRef]

McConnell, H. M.

H. M. McConnell, T. H. Watts, and R. M. Weis, “Supported planar membranes in studies of cell-cell recognition in the immune system,” Biochim. Biophys. Acta 864, 95–106 (1986).
[CrossRef] [PubMed]

Meijer, E. W.

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Persoons, A.

T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).

Petralli-Mallow, T.

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68, 589–593 (1999).
[CrossRef]

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99, 341–357 (1994).
[CrossRef] [PubMed]

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Philpott, M. R.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
[CrossRef]

Pu, L.

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

Rasing, T.

S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
[CrossRef]

Reider, G. A.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
[CrossRef]

Rentzepis, P. M.

J. A. Giordmaine and P. M. Rentzepis, “Correlation of optical activity and nonlinear polarizability,” J. Chem. Phys. 64, 215–221 (1967).

Richmond, G. L.

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Total internal reflection second-harmonic generation: probing the alkane water interface,” Appl. Phys. A 59, 623–629 (1994).
[CrossRef]

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Studies of alkane/water interfaces by total internal reflection second harmonic generation,” J. Phys. Chem. 98, 9688–9692 (1994).
[CrossRef]

G. L. Richmond, “Second harmonic generation studies of anionic adsorption on polycrystalline and single crystal silver surfaces,” Chem. Phys. Lett. 110, 571–575 (1984).
[CrossRef]

Romagnoli, M.

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
[CrossRef]

Shen, Y. R.

S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
[CrossRef]

Simon, H. J.

H. J. Simon and N. Bloembergen, “Second-harmonic light generation in crystals with natural optical activity,” Phys. Rev. 171, 1104–1114 (1968).
[CrossRef]

Simpson, G. J.

G. J. Simpson, “Structural origins of circular dichroism in surface second harmonic generation,” J. Chem. Phys. 117, 3398–3410 (2002).
[CrossRef]

Tadjeddine, A.

P. Guyot-Sionnest and A. Tadjeddine, “Study of silver(111) and gold(111) electrodes by optical second-harmonic generation,” J. Chem. Phys. 92, 734–738 (1990).
[CrossRef]

Van Elshocht, S.

T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

Verbiest, T.

T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).

Watts, T. H.

H. M. McConnell, T. H. Watts, and R. M. Weis, “Supported planar membranes in studies of cell-cell recognition in the immune system,” Biochim. Biophys. Acta 864, 95–106 (1986).
[CrossRef] [PubMed]

Weis, R. M.

H. M. McConnell, T. H. Watts, and R. M. Weis, “Supported planar membranes in studies of cell-cell recognition in the immune system,” Biochim. Biophys. Acta 864, 95–106 (1986).
[CrossRef] [PubMed]

Wierschem, M.

M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
[CrossRef]

Wong, T. M.

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Yee, H. I.

H. I. Yee, J. D. Byers, and J. M. Hicks, “,” Proc. SPIE 2125, 119–131 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonicgeneration analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
[CrossRef]

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

Anal. Chim. Acta. (1)

M. A. Kriech and J. C. Conboy, “Measuring melittin binding to planar supported lipid bilayers by second harmonic generation,” Anal. Chim. Acta. 75, 6621–6628 (2003).

Annu. Rev. Phys. Chem. (1)

K. B. Eisenthal, “Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation,” Annu. Rev. Phys. Chem. 43, 627–661 (1992).
[CrossRef]

Appl. Phys. A (1)

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Total internal reflection second-harmonic generation: probing the alkane water interface,” Appl. Phys. A 59, 623–629 (1994).
[CrossRef]

Appl. Phys. B (2)

J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68, 589–593 (1999).
[CrossRef]

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38, 107–116 (1985).
[CrossRef]

Biochim. Biophys. Acta (1)

H. M. McConnell, T. H. Watts, and R. M. Weis, “Supported planar membranes in studies of cell-cell recognition in the immune system,” Biochim. Biophys. Acta 864, 95–106 (1986).
[CrossRef] [PubMed]

Chem. Phys. Lett. (3)

J. D. Byers and J. M. Hicks, “Electronic spectral effects on chiral surface second harmonic generation,” Chem. Phys. Lett. 231, 216–224 (1994).
[CrossRef]

G. L. Richmond, “Second harmonic generation studies of anionic adsorption on polycrystalline and single crystal silver surfaces,” Chem. Phys. Lett. 110, 571–575 (1984).
[CrossRef]

R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106, 30–35 (1984).
[CrossRef]

Faraday Discuss. (1)

J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Faraday Discuss. 99, 341–357 (1994).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. A. Kriech and J. C. Conboy, “Label-free chiral detection of melittin binding to a membrane,” J. Am. Chem. Soc. 125, 1148–1149 (2003).
[CrossRef] [PubMed]

J. Chem. Phys. (4)

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonicgeneration analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994).
[CrossRef]

G. J. Simpson, “Structural origins of circular dichroism in surface second harmonic generation,” J. Chem. Phys. 117, 3398–3410 (2002).
[CrossRef]

J. A. Giordmaine and P. M. Rentzepis, “Correlation of optical activity and nonlinear polarizability,” J. Chem. Phys. 64, 215–221 (1967).

P. Guyot-Sionnest and A. Tadjeddine, “Study of silver(111) and gold(111) electrodes by optical second-harmonic generation,” J. Chem. Phys. 92, 734–738 (1990).
[CrossRef]

J. Phys. Chem. (3)

T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993).
[CrossRef]

D. A. Higgins and R. M. Corn, “Second harmonic generation studies of adsorption at a liquid-liquid electrochemical interface,” J. Phys. Chem. 97, 489–493 (1993).
[CrossRef]

J. C. Conboy, J. L. Daschbach, and G. L. Richmond, “Studies of alkane/water interfaces by total internal reflection second harmonic generation,” J. Phys. Chem. 98, 9688–9692 (1994).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Interface imaging by second-harmonic microscopy,” J. Vac. Sci. Technol. B 15, 1564–1568 (1997).
[CrossRef]

Langmuir (1)

S. G. Grubb, M. W. Kim, T. Rasing, and Y. R. Shen, “Orientation of molecular monolayers at the liquid-liquid interface as studied by optical second harmonic generation,” Langmuir 4, 452–454 (1988).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (1)

A. Persoons, M. Kauranen, S. Van Elshocht, T. Verbiest, L. Ma, L. Pu, B. M. W. Langeveld-Voss, and E. W. Meijer, “Chiral effects in second-order nonlinear optics,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 315, 395–400 (1998).

NATO ASI Ser., Ser. E (1)

M. Kauranen, T. Verbiest, J. J. Maki, and A. Persoons, “Chirality effects in second-order nonlinear optics,” NATO ASI Ser., Ser. E 9, 129–144 (1996).

Nonlinear Opt. (1)

T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Optical susceptibilities of chiral systems and chiral thin films,” Nonlinear Opt. 22, 155–160 (1999).

Phys. Rev. (2)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

H. J. Simon and N. Bloembergen, “Second-harmonic light generation in crystals with natural optical activity,” Phys. Rev. 171, 1104–1114 (1968).
[CrossRef]

Phys. Rev. B (1)

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14643–14647 (1994).
[CrossRef]

Phys. Status Solidi A (1)

M. Florsheimer, “Second-harmonic microscopy. A new tool for the remote sensing of interfaces,” Phys. Status Solidi A 173, 15–27 (1999).
[CrossRef]

Proc. SPIE (1)

H. I. Yee, J. D. Byers, and J. M. Hicks, “,” Proc. SPIE 2125, 119–131 (1994).
[CrossRef]

Other (3)

G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum, New York, 1996), p. 738.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

P. Guyot-Sionnest, Y. R. Shen, and T. F. Heinz, “Comments on ‘Determination of the nonlinear optical susceptibility χ(2) of surface layers’ by B. Dick et al.,” Appl. Phys. B, 237–238 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a (a) copropagating and (b) counterpropagating SH geometry. Circles represent vectors coming out of the plane of the drawing. Insert: definition of the polarization angle (γ) in the beam coordinate system.

Fig. 2
Fig. 2

Calculated theoretical SH response as a function of incident polarization (γ) for a copropagating geometry, (a) s-polarized and (b) p-polarized output and for a counterpropagating geometry, the (c) (achiral), y-polarized, and (d) (chiral), x-polarized output.  

Fig. 3
Fig. 3

CD spectra of RBN (solid curve) and SBN (dashed curve), also shown is the structure of RBN.

Fig. 4
Fig. 4

Counterpropagating SHG polarization anisotropy curves for a POPC membrane (circle) and RBN (square) for both (a) the y-polarized and (b) x-polarized SH response. The solid curve for each curve represents the fit to the data using Eqs. (23a) and (23b), respectively. (a.u. is defined as arbitrary units).

Fig. 5
Fig. 5

Copropagating SHG polarization anisotropy curves for a POPC membrane (circles) and RBN (squares) for both (a) s-polarized and (b) p-polarized SH response.

Fig. 6
Fig. 6

Chiral (circle) and achiral (square) SH response for a racemic mixture of RBN and SBN intercalated into a POPC PSLB. The solid curve for the achiral signal represents a fit to the data using Eq. (23b).

Tables (1)

Tables Icon

Table 1 Refractive Indices of Fused Silica and Water at 275 nm and 550 nm

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

P(2ω)=χijk(2)E(ω)jE(ω)k,
χijk=χr,ijk+iχi,ijk.
χijk(2)=Nβijk(2),
χzzz,
χzyy=χzxx,
χyzy=χxzx=χyyz=χxxz,
χxyz=-χyzx=χxzy=-χyxz,
χxyz=l=1nN(R)βxyzR+N(S)βxyzS,
PxNL=χxzxE(z1)E(x2)+χxxzE(x1)E(z2)+χxyzE(y1)E(z2)+χxzyE(z1)E(y2),
PyNL=χyzyE(z1)F(y2)+χyyzE(y1)E(z2)+χyxzE(x1)E(z2)+χyzxE(z1)E(x2),
PzNL=χzzzE(z1)E(z2)+χzyyE(y1)E(y2)+χzxxE(x1)E(x2),
E(x)=Ef(x)cos(γ)cos(θi),
E(y)=Ef(y)sin(γ),
E(z)=Ef(z)cos(γ)sin(θi),
f(x)=2 cos(θi)sin(θt)cos(θt)sin(θi+θt)cos(θi-θt),
f(y)=2 cos(θi)sin(θt)sin(θi+θt),
f(z)=2 cos(θi)sin(θt)2sin(θi+θt)cos(θi-θt),
E(x2)=E(x1),
E(y2)=E(y1),
E(z2)=E(z1).
 coPxNL=I sin(θi)[2 cos(θi)cos2(γ)fzfxχyzy+2 sin(γ)cos(γ)fyfzχxyz],
 coPyNL=I sin(θi)[2 sin(γ)cos(γ)fzfyχyzy-2 cos(θi)cos2(γ)fxfzχxyz],
 coPzNL=I[χzxx{fx2 cos2(γ)cos2(θi)+fy2 sin2(γ)}+χzzzfz2 cos2(γ)sin2(θi)],
fSr=cos θi-ntnr2-sin2 θicos θi+ntnr2-sin2 θi,
fPr=-ntnr2 cos θi+ntnr2-sin2 θintnr2 cos θi+ntnr2-sin2 θi,
E(x2)=Ef(x)fPr cos(γ)cos(θi),
E(y2)=Ef(y)fSr sin(γ),
E(z2)=-Ef(z)fPr cos(γ)sin(θi).
 ctPxNL=I sin(θi)sin(γ)cos(γ)fyfzχxyzK,
 ctPyNL=I sin(θi)sin(γ)cos(γ)fyfzχyzyK,
K=fSr-fPr.
Is2ω=|coPyNLcoFyNL|2,
Ip2ω=|coPxNLcoFxNL+coPzNLcoFzNL|2,
 coFxNL=-8πidω sin(θT2ω)cos(θT2ω)cnr2ω sin(θR2ω+θT2ω)cos(θT2ω-θR2ω),
 coFyNL=8πidω sin(θT2ω)cnr2ω sin(θR2ω+θT2ω),
 coFzNL=nt2ωnm2ω2 8πidω sin(θT2ω)sin(θT2ω)cnr2ω sin(θR2ω+θT2ω)cos(θT2ω-θR2ω),
χzzzeff=dχzzznm,χzxxeff=dχzxxnm,
χyzyeff=dχyzy,χxyzeff=dχxyz.
Is2ω=|coFyNL sin(θi)[2 sin(γ)cos(γ)fzfyχyzy-2 cos(θi)cos2(γ)fxfzχxyz]|2,
Ip2ω=|coFxNL sin(θi)[2 cos(θi)cos2(γ)fzfxχyzy+2 sin(γ)cos(γ)fyfzχxyz]+coFzNL[χzxx{fx2 cos2(γ)cos2(θi)+fy2 sin2(γ)}+χzzzfz2 cos2(γ)sin2(θi)]|2.
ISHG-CDχxyz-Rχyzy-I-χyzy-Rχxyz-I.
Is2ω|coFyNL sin(θi)[-2 cos(θi)fxfzχxyz]|2,
Ix2ω=|ctPxNLctFxNL|2,
Iy2ω=|ctPyNLctFyNL|2,
 ctFxNL=-8πiω,
 ctFyNL=8πiω.
Ix2ω=64π2 sin2(θi)sin2(γ)cos2(γ)fy2fz2χxyz2K2,
Iy2ω=64π2 sin2(θi)sin2(γ)cos2(γ)fy2fz2χyzy2K2.

Metrics