Abstract

The theoretical and experimental investigation of a new chiral second-harmonic generation technique that utilizes a counterpropagating optical geometry was conducted. The counterpropagating optical geometry employed here can effectively separate the chiral and achiral contributions to the SH emission, which cannot be easily accomplished under a copropagating geometry. The technique was applied to an experimental investigation of the molecular adsorption of (R)-(+)-1, 1-bi-2-naphthol to a planar-supported lipid bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine. A strong chiral second-harmonic generation response was observed when a single enantiomer intercalated into the membrane, but showed no chiral response when equal concentrations of the enantiomers were present in the bilayer.

© 2004 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription