Abstract

The near-field radiation pattern of a long thin slit (with a width much smaller than the excitation wavelength) in a uniform aluminum surface was measured and modeled by numerical computation. In particular, the interplay between the incident light polarization and the slit width is found to play an essential role in the near-field profile on the back side of the nanoslits. Two-dimensional finite-difference time-domain computer simulations were performed to calculate the near-field intensity profile for different slit widths and metal thicknesses. This method will allow the optimization of three-dimensional near-field radiation patterns for a variety of near-field molecular scanning schemes.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Wolffe and M. A. Matzke, “Epigenetics: regulation through repression,” Science 286, 481–486 (1999).
    [CrossRef] [PubMed]
  2. G. Riddihough and E. Pennisi, “The evolution of epigenetics,” Science 293, 1063 (2001).
    [CrossRef] [PubMed]
  3. J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th ed. (Freeman, New York, 2002), pp. 867–879.
  4. M. Gu, Advanced Optical Imaging Theory (Springer, Berlin, 1999), pp. 143–176 and Chap. 6.
  5. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
    [CrossRef] [PubMed]
  6. S. Kawata, M. Ohtsu, and M. Irie, Nano-optics (Springer, New York, 2001).
  7. J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
    [CrossRef] [PubMed]
  8. R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
    [CrossRef]
  9. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
    [CrossRef] [PubMed]
  10. M. A. Paesler and P. J. Moyer, Near-Field Optics (Wiley-Interscience, New York, 1996).
  11. Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577–1583 (1986).
    [CrossRef]
  12. G. Hatakoshi and H. Furuyama, “Polarization dependence analysis of optical loss in small aperture metal waveguides for near field optics,” Jpn. J. Appl. Phys. 40, 1548–1551 (2001).
    [CrossRef]
  13. H. Furukawa and S. Kawata, “Near-field optical microscope images of a dielectric flat substrate with subwavelength strips,” Opt. Commun. 196, 93–102 (2001).
    [CrossRef]
  14. Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, “Observation and analysis of near-field optical diffraction,” J. Opt. Soc. Am. A 16, 141–148 (1999).
    [CrossRef]
  15. P.-K. Wei, H.-L. Chou, and W. Fann, “Optical near-field in nano metallic slits,” Opt. Exp. 10, 1418–1424 (2002), http://www.opticsexpress.org.
    [CrossRef]
  16. A. Yariv, Optical Electronics, 4th ed. (Saunders, Fort Worth, Tex., 1991), pp. 45–50.
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  18. W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
    [CrossRef]
  19. E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  20. P. K. Wei and W. S. Fann, “Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,” J. Appl. Phys. 84, 4655–4660 (1998).
    [CrossRef]
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  22. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1978), Chap. 8, pp. 334–350.
  23. D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
    [CrossRef]
  24. P. K. Wei, R. L. Chang, J. H. Hsu, S. H. Lin, W. S. Fann, and B. R. Hsieh, “Two-dimensional near-field intensity distribution of tapered fiber probes,” Opt. Lett. 21, 1876–1878 (1996).
    [CrossRef] [PubMed]
  25. A. V. Zvyagin, J. D. White, and M. Ohtsu, “Near-field optical microscope image formation: a theoretical and experimental study,” Opt. Lett. 22, 955–957 (1997).
    [CrossRef] [PubMed]
  26. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  27. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  28. D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
    [CrossRef]
  29. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]

2003 (3)

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

2002 (3)

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
[CrossRef]

P.-K. Wei, H.-L. Chou, and W. Fann, “Optical near-field in nano metallic slits,” Opt. Exp. 10, 1418–1424 (2002), http://www.opticsexpress.org.
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

2001 (5)

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

G. Hatakoshi and H. Furuyama, “Polarization dependence analysis of optical loss in small aperture metal waveguides for near field optics,” Jpn. J. Appl. Phys. 40, 1548–1551 (2001).
[CrossRef]

H. Furukawa and S. Kawata, “Near-field optical microscope images of a dielectric flat substrate with subwavelength strips,” Opt. Commun. 196, 93–102 (2001).
[CrossRef]

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

G. Riddihough and E. Pennisi, “The evolution of epigenetics,” Science 293, 1063 (2001).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

P. K. Wei and W. S. Fann, “Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,” J. Appl. Phys. 84, 4655–4660 (1998).
[CrossRef]

1997 (1)

1996 (1)

1992 (2)

D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
[CrossRef]

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

1986 (1)

Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577–1583 (1986).
[CrossRef]

1950 (1)

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Austin, R.

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Austin, R. H.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
[CrossRef]

Bakajin, O.

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Bhusari, D.

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

Bidstrup Allen, S. A.

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Cao, H.

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
[CrossRef]

Chan, E.

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Chan, S. S.

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Chang, R. L.

Chen, L.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

Chou, C.-F.

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Chou, H.-L.

P.-K. Wei, H.-L. Chou, and W. Fann, “Optical near-field in nano metallic slits,” Opt. Exp. 10, 1418–1424 (2002), http://www.opticsexpress.org.
[CrossRef]

Chou, S. Y.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
[CrossRef]

Cox, E. C.

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
[CrossRef]

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Duke, T.

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Eckert, R.

Fann, W.

P.-K. Wei, H.-L. Chou, and W. Fann, “Optical near-field in nano metallic slits,” Opt. Exp. 10, 1418–1424 (2002), http://www.opticsexpress.org.
[CrossRef]

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Fann, W. S.

P. K. Wei and W. S. Fann, “Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,” J. Appl. Phys. 84, 4655–4660 (1998).
[CrossRef]

P. K. Wei, R. L. Chang, J. H. Hsu, S. H. Lin, W. S. Fann, and B. R. Hsieh, “Two-dimensional near-field intensity distribution of tapered fiber probes,” Opt. Lett. 21, 1876–1878 (1996).
[CrossRef] [PubMed]

Finn, P. L.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

Furukawa, H.

H. Furukawa and S. Kawata, “Near-field optical microscope images of a dielectric flat substrate with subwavelength strips,” Opt. Commun. 196, 93–102 (2001).
[CrossRef]

Furuyama, H.

G. Hatakoshi and H. Furuyama, “Polarization dependence analysis of optical loss in small aperture metal waveguides for near field optics,” Jpn. J. Appl. Phys. 40, 1548–1551 (2001).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

Ha, T.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

Hatakoshi, G.

G. Hatakoshi and H. Furuyama, “Polarization dependence analysis of optical loss in small aperture metal waveguides for near field optics,” Jpn. J. Appl. Phys. 40, 1548–1551 (2001).
[CrossRef]

Heinzelmann, H.

Hsieh, B. R.

Hsu, J. H.

Huser, Th.

Kawata, S.

H. Furukawa and S. Kawata, “Near-field optical microscope images of a dielectric flat substrate with subwavelength strips,” Opt. Commun. 196, 93–102 (2001).
[CrossRef]

Kohl, P. A.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Krotine, J.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

Lacoste, Th.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Leviatan, Y.

Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577–1583 (1986).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Li, W.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

Lin, S. H.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Liou, L.

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Matzke, M. A.

A. P. Wolffe and M. A. Matzke, “Epigenetics: regulation through repression,” Science 286, 481–486 (1999).
[CrossRef] [PubMed]

McKinney, S. A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

Novotny, L.

Ohtsu, M.

Padovani, A. M.

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

Pennisi, E.

G. Riddihough and E. Pennisi, “The evolution of epigenetics,” Science 293, 1063 (2001).
[CrossRef] [PubMed]

Reed, H. A.

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

Riddihough, G.

G. Riddihough and E. Pennisi, “The evolution of epigenetics,” Science 293, 1063 (2001).
[CrossRef] [PubMed]

Selvini, P. R.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

Sturm, J. C.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

Sullivan, D. M.

D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
[CrossRef]

Tegenfeldt, J. O.

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
[CrossRef]

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

Wedlake, M.

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

Wei, P. K.

P. K. Wei and W. S. Fann, “Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,” J. Appl. Phys. 84, 4655–4660 (1998).
[CrossRef]

P. K. Wei, R. L. Chang, J. H. Hsu, S. H. Lin, W. S. Fann, and B. R. Hsieh, “Two-dimensional near-field intensity distribution of tapered fiber probes,” Opt. Lett. 21, 1876–1878 (1996).
[CrossRef] [PubMed]

Wei, P.-K.

P.-K. Wei, H.-L. Chou, and W. Fann, “Optical near-field in nano metallic slits,” Opt. Exp. 10, 1418–1424 (2002), http://www.opticsexpress.org.
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

White, J. D.

Wolffe, A. P.

A. P. Wolffe and M. A. Matzke, “Epigenetics: regulation through repression,” Science 286, 481–486 (1999).
[CrossRef] [PubMed]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

Zvyagin, A. V.

Appl. Phys. Lett. (1)

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

R. H. Austin, J. O. Tegenfeldt, H. Cao, S. Y. Chou, and E. C. Cox, “Scanning the controls: genomics and nanotechnology,” IEEE Trans. Nanotechnol. 1, 12–17 (2002).
[CrossRef]

J. Appl. Phys. (2)

Y. Leviatan, “Study of near-zone fields of a small aperture,” J. Appl. Phys. 60, 1577–1583 (1986).
[CrossRef]

P. K. Wei and W. S. Fann, “Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,” J. Appl. Phys. 84, 4655–4660 (1998).
[CrossRef]

J. Microelectromech. Syst. (1)

D. Bhusari, H. A. Reed, M. Wedlake, A. M. Padovani, S. A. Bidstrup Allen, and P. A. Kohl, “Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications,” J. Microelectromech. Syst. 10, 400–408 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

G. Hatakoshi and H. Furuyama, “Polarization dependence analysis of optical loss in small aperture metal waveguides for near field optics,” Jpn. J. Appl. Phys. 40, 1548–1551 (2001).
[CrossRef]

Nanotechnology (1)

W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, “Sacrificial polymers for nanofluidic channels in biological applications,” Nanotechnology 14, 578–583 (2003).
[CrossRef]

Opt. Commun. (1)

H. Furukawa and S. Kawata, “Near-field optical microscope images of a dielectric flat substrate with subwavelength strips,” Opt. Commun. 196, 93–102 (2001).
[CrossRef]

Opt. Exp. (1)

P.-K. Wei, H.-L. Chou, and W. Fann, “Optical near-field in nano metallic slits,” Opt. Exp. 10, 1418–1424 (2002), http://www.opticsexpress.org.
[CrossRef]

Opt. Lett. (2)

Philips Res. Rep. (1)

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. Lett. (1)

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381 (2001).
[CrossRef] [PubMed]

Science (5)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvini, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065 (2003).
[CrossRef] [PubMed]

A. P. Wolffe and M. A. Matzke, “Epigenetics: regulation through repression,” Science 286, 481–486 (1999).
[CrossRef] [PubMed]

G. Riddihough and E. Pennisi, “The evolution of epigenetics,” Science 293, 1063 (2001).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a sub-wavelength aperature,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Other (8)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1978), Chap. 8, pp. 334–350.

J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th ed. (Freeman, New York, 2002), pp. 867–879.

M. Gu, Advanced Optical Imaging Theory (Springer, Berlin, 1999), pp. 143–176 and Chap. 6.

S. Kawata, M. Ohtsu, and M. Irie, Nano-optics (Springer, New York, 2001).

M. A. Paesler and P. J. Moyer, Near-Field Optics (Wiley-Interscience, New York, 1996).

A. Yariv, Optical Electronics, 4th ed. (Saunders, Fort Worth, Tex., 1991), pp. 45–50.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Topography and near-field images of 500- and 100-nm slits. (a) Topographic and (c) near-field optical image of a 500-nm slit. (b) Topographic and (d) near-field optical image of a 100-nm slit. In each case, the scan domain is 2000 nm×2000 nm with the slit centered vertically at 1000 nm in the horizontal direction. For the optical images, the polarization of the incident light was controlled by a half-wave plate in the middle of the scan (incident power was kept constant). The lower part of the image corresponds to E, whereas the upper part is E as indicated by the white arrow. The images were recorded under active feedback control, and the probe–sample separation is ∼5 nm.

Fig. 2
Fig. 2

Near-field intensity profile across the slits of E and E for slit widths of (a) 500 nm and (b) 100 nm.

Fig. 3
Fig. 3

Far-field images of (a) the 500-nm slit and (b) the 100-nm slit taken with a probe–slit vertical separation of 1500 and 1200 nm, respectively. The polarization state is shown by the white arrow. As in Fig. 1, the incident polarization is switched during the middle of the scanning. The lower part is E and the upper part is E. In the scale bar, zero denotes average intensity. Positive numbers represent intensity larger than average whereas negative numbers represent intensity smaller than average.

Fig. 4
Fig. 4

Cross-sectional intensity profile at different probe–slit separations for (a) the 500-nm slit and (b) the 300-nm slit.

Fig. 5
Fig. 5

FWHM of light intensity distribution versus probe–slit separations for the 300-nm slit. Incident polarization is parallel to the slit.

Fig. 6
Fig. 6

Peak intensity as a function of probe–slit separation for the 300-nm slit for light (a) polarized along the slit direction and (b) polarized perpendicular to the slit direction. The solid squares represent the experimental data, and the solid curves represent the fit obtained by Eq. (3).

Fig. 7
Fig. 7

Schematic of the FDTD computer simulation. The incident plane wave (λ=532 nm) enters from the bottom of the domain. A realistic frequency-dependent complex dielectric constant is used for aluminum. The slit width is D and the aluminum film thickness is t.

Fig. 8
Fig. 8

Calculated (dotted curves) and experimental near-field intensity profiles (solid curves) for (a) E and (b) E for the 100-nm slit. The calculated curves are the convolution of the FDTD simulation at a metal surface with the Gaussian response function of the tapered fiber probe. The FWHM of the response function is 150 nm.

Fig. 9
Fig. 9

(a) Calculated intensity profiles for E and E for a 300-nm slit. The increment of the probe–sample separation for each curve is 50 nm. (b) The calculated decay curves for E and E. The decay lengths as calculated by Eq. (3) are 190 and 330 nm, respectively.

Fig. 10
Fig. 10

Calculated (dotted curve) and experimental measured (solid squares) FWHM of E intensity distributions at different vertical positions from the 300-nm slit. The FWHM at the metal surface for both curves is normalized to 1.

Fig. 11
Fig. 11

Calculated near-field intensity distributions of E and E for (a) 100-nm, (b) 300-nm, and (c) 500-nm slits, respectively. The left images are E and the right images are E.

Fig. 12
Fig. 12

Calculated maximum near-field intensity (solid squares) of E and transmission intensity through skin depth (solid triangles) as a function of metal film thickness. The slit width is 30 nm. Incident intensity is 1, and near-field intensity is calculated on a metal surface. Signal-to-noise (S/N) ratio (open squares) is the ratio of the maximum near-field intensity divided by the transmission intensity through skin depth (background noise). The optimized metal film thickness is ≈50 nm. The inset shows the calculated near-field intensity profile of E for a film thickness of 20 nm.

Fig. 13
Fig. 13

Calculated peak near-field intensity of E (solid squares) and the FWHM of intensity profiles (solid triangles) versus slit widths. The metal film thickness is 50 nm. Near-field intensity is calculated on a metal surface and normalized with respect to incident intensity. The dashed curve is the fitting to near-field intensity obtained with Eq. (6). The inset shows the near-field profile for a 100-nm slit.

Fig. 14
Fig. 14

Calculated near-field intensity distributions for E from 30-nm (left) and 50-nm (right) slits in (a) and (b) air and (c) and (d) water. The thickness of the Al film is 50 nm.

Fig. 15
Fig. 15

Calculated FWHM intensity distributions versus vertical distance from a metal surface for E for 30-, 50-, and 100-nm slits in water. The thickness of the Al film is 50 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

w(z)2w02[1+(z/z0)2],
V0=πw02/4×2z0=8λ3f4π2D4=8λ3π2N4,
I=If+In * exp(-z/D),
Dzt=cHyx-Hxy,
Dz(ϖ)=r*(ϖ)Ez(ϖ),
Hxt=-cEzy,
Hyt=cEzx,
r*(ϖ)=1+ϖp2ϖ(jνc-ϖ),
In=0.00018+b * ω3.44,

Metrics