Abstract

We report new measurements of the hyperfine spectra of BX transitions in the wavelength range 500–517 nm. Four effective hyperfine parameters, eqQB, CB, dB, and δB, are determined for an extensive number of rovibrational levels spanning the intermediate region 42v70 in the electronically excited B0u+(3u) state. Second-order perturbation accounts for most of the observed rovibrational dependence of the hyperfine interactions. In addition, it was found that, near vibrational levels v=5760, the 1g(1g) electronic state strongly perturbs the B state through rotational coincidence, leading to effects such as abnormal variations in the hyperfine parameters and strong ug mixing recorded for the transition P(84) 600. Various perturbation effects in the B state identified so far are summarized. Also, the radial dependence of the hyperfine interactions was examined by removal of the vibrational average in the hyperfine parameters.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. I. Theory,” J. Phys. (Paris) 42, 937–947 (1981).
    [CrossRef]
  2. J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. II. Experiments on natural and hyperfine predissociation,” J. Phys. (Paris) 42, 949–959 (1981).
    [CrossRef]
  3. J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
    [CrossRef]
  4. J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
    [CrossRef]
  5. M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. (Paris) 39, 591–609 (1978).
    [CrossRef]
  6. M. Saute and M. Aubert-Frécon, “Calculated long-range potential-energy curves for the 23 molecular states of I2,” J. Chem. Phys. 77, 5639–5646 (1982).
    [CrossRef]
  7. C. Teichteil and M. Pelissier, “Relativistic calculations of excited states of molecular iodine,” Chem. Phys. 180, 1–18 (1994).
    [CrossRef]
  8. W. A. de Jong, L. Visscher, and W. C. Nieuwpoort, “Relativistic and correlated calculations on the ground, excited, and ionized states of iodine,” J. Chem. Phys. 107, 9046–9058 (1997).
    [CrossRef]
  9. N. F. Ramsey and E. M. Purcell, “Interactions between nuclear spins in molecules,” Phys. Rev. 85, 143L–144L (1952).
    [CrossRef]
  10. M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
    [CrossRef]
  11. J. Vigué, M. Broyer, and J. C. Lehmann, “Ab initio calculation of hyperfine and magnetic parameters in the I2B state,” Phys. Rev. Lett. 42, 883–887 (1979).
    [CrossRef]
  12. A. Morinaga, “Hyperfine structure and hyperfine coupling constant of molecular iodine,” Jpn. J. Appl. Phys. 23, 774–775 (1984).
    [CrossRef]
  13. B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. D 19, 31–44 (2002).
    [CrossRef]
  14. J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
    [CrossRef]
  15. C. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5 145 Å and 5 017 Å: main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
    [CrossRef]
  16. J. P. Pique, F. Hartmann, R. Bacis, and S. Churassy, “Hyperfine structure of higher rovibrational levels in the iodine B state studied by Ar+ laser induced fluorescence,” Opt. Commun. 36, 354–358 (1981).
    [CrossRef]
  17. H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
    [CrossRef]
  18. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]
  19. W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
    [CrossRef]
  20. W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm): errata,” Opt. Lett. 27, 1076–1076 (2002).
    [CrossRef]
  21. J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
    [CrossRef]
  22. R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
    [CrossRef]
  23. C. Ishibashi, J. Ye, and J. L. Hall, “Issues and applications in ultra-sensitive molecular spectroscopy,” in Methods for Ultrasensitive Detection II, C. W. Wilkerson, Jr., ed., Proc. SPIE 4634, 58–69 (2002).
    [CrossRef]
  24. S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode 14800−1 –20000cm−1 (Editions u CNRS, Paris, 1985).
  25. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
    [CrossRef]
  26. J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).
  27. J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
    [CrossRef]
  28. S. Gerstenkorn, P. Luc, and C. Amiot, “Analysis of the long range potential of iodine in the B 3Π0u+ state,” J. Phys. (Paris) 46, 355–364 (1985).
    [CrossRef]
  29. P. J. Jewsbury, T. Ridley, K. P. Lawley, and R. J. Donovan, “Parity mixing in the valence states of I2 probed by optical–optical double-resonance excitation of ion-pair states—characterization of a new ion-pair state, H1u(3P1), and a valence state, c1g,” J. Mol. Spectrosc. 157, 33–49 (1993).
    [CrossRef]
  30. T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
    [CrossRef]
  31. F. L. Hong and J. Ishikawa, “Hyperfine structures of the R(122) 35–0 and P(84) 33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
    [CrossRef]
  32. C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
    [CrossRef]
  33. C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, “A 633 nm iodine-stabilized diode-laser frequency standard,” Metrologia 36, 41–45 (1999).
    [CrossRef]
  34. A. Razet, J. Gagniere, and P. Juncar, “Hyperfine-structure analysis of the 33P(6–3) line of 127I2 at 633 nm using a continuous-wave tunable dye-laser,” Metrologia 30, 61–65 (1993).
    [CrossRef]
  35. H. R. Simonsen, “Iodine-stabilized extended cavity diode laser at λ=633nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
    [CrossRef]
  36. A. Morinaga, K. Sugiyama, and N. Ito, “Hyperfine-structure of low-lying vibrational levels in the B-electronic state of molecular iodine,” J. Opt. Soc. Am. B 6, 1656–1659 (1989).
    [CrossRef]
  37. P. Gill and J. A. Clancy, “A microprocessor-controlled iodine-stabilized ion laser,” J. Phys. E 21, 213–218 (1988).
    [CrossRef]
  38. F. Bertinetto, P. Cordiale, S. Fontana, and G. B. Picotto, “Helium–neon lasers stabilized to iodine at 605-nm,” IEEE Trans. Instrum. Meas. 36, 609–612 (1987).
    [CrossRef]
  39. W.-Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover resonances at 543 nm,” Opt. Commun. 156, 170–177 (1998).
    [CrossRef]
  40. J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state. III. Experiments on magnetic predissociation,” J. Phys. (Paris) 42, 961–978 (1981).
    [CrossRef]
  41. E. Martínez, M. T. Martínez, and F. Castano, “Iodine B 3Π0u+ state predissociation—evaluation of the interaction mechanisms for predissociated levels of the B-state,” J. Mol. Spectrosc. 128, 554–563 (1988).
    [CrossRef]
  42. V. Špirko and J. Blabla, “Nuclear-quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular-iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
    [CrossRef]
  43. W. S. Barney, C. M. Western, and K. C. Janda, “Measurement of the electronic wave function: separated atom wave function analysis of the R-dependent hyperfine constants of the iodine monochloride A state,” J. Chem. Phys. 113, 7211–7223 (2000).
    [CrossRef]
  44. R. J. Le Roy, “LEVEL 7.5 : A computer program for solving the radial Schrödinger equation for bound and quasibound levels,” University of Waterloo Chemical Physics Research Rep. CP-655 (2002). The source code and manual for this program may be obtained from the Computer Programs link on the www site http://leroy.uwaterloo.ca.
  45. R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
    [CrossRef]

2002 (5)

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. D 19, 31–44 (2002).
[CrossRef]

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

C. Ishibashi, J. Ye, and J. L. Hall, “Issues and applications in ultra-sensitive molecular spectroscopy,” in Methods for Ultrasensitive Detection II, C. W. Wilkerson, Jr., ed., Proc. SPIE 4634, 58–69 (2002).
[CrossRef]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm): errata,” Opt. Lett. 27, 1076–1076 (2002).
[CrossRef]

2001 (2)

2000 (2)

F. L. Hong and J. Ishikawa, “Hyperfine structures of the R(122) 35–0 and P(84) 33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

W. S. Barney, C. M. Western, and K. C. Janda, “Measurement of the electronic wave function: separated atom wave function analysis of the R-dependent hyperfine constants of the iodine monochloride A state,” J. Chem. Phys. 113, 7211–7223 (2000).
[CrossRef]

1999 (4)

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, “A 633 nm iodine-stabilized diode-laser frequency standard,” Metrologia 36, 41–45 (1999).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

1998 (1)

W.-Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover resonances at 543 nm,” Opt. Commun. 156, 170–177 (1998).
[CrossRef]

1997 (2)

W. A. de Jong, L. Visscher, and W. C. Nieuwpoort, “Relativistic and correlated calculations on the ground, excited, and ionized states of iodine,” J. Chem. Phys. 107, 9046–9058 (1997).
[CrossRef]

H. R. Simonsen, “Iodine-stabilized extended cavity diode laser at λ=633nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
[CrossRef]

1996 (1)

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

1994 (1)

C. Teichteil and M. Pelissier, “Relativistic calculations of excited states of molecular iodine,” Chem. Phys. 180, 1–18 (1994).
[CrossRef]

1993 (2)

A. Razet, J. Gagniere, and P. Juncar, “Hyperfine-structure analysis of the 33P(6–3) line of 127I2 at 633 nm using a continuous-wave tunable dye-laser,” Metrologia 30, 61–65 (1993).
[CrossRef]

P. J. Jewsbury, T. Ridley, K. P. Lawley, and R. J. Donovan, “Parity mixing in the valence states of I2 probed by optical–optical double-resonance excitation of ion-pair states—characterization of a new ion-pair state, H1u(3P1), and a valence state, c1g,” J. Mol. Spectrosc. 157, 33–49 (1993).
[CrossRef]

1989 (1)

1988 (3)

P. Gill and J. A. Clancy, “A microprocessor-controlled iodine-stabilized ion laser,” J. Phys. E 21, 213–218 (1988).
[CrossRef]

E. Martínez, M. T. Martínez, and F. Castano, “Iodine B 3Π0u+ state predissociation—evaluation of the interaction mechanisms for predissociated levels of the B-state,” J. Mol. Spectrosc. 128, 554–563 (1988).
[CrossRef]

V. Špirko and J. Blabla, “Nuclear-quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular-iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

1987 (1)

F. Bertinetto, P. Cordiale, S. Fontana, and G. B. Picotto, “Helium–neon lasers stabilized to iodine at 605-nm,” IEEE Trans. Instrum. Meas. 36, 609–612 (1987).
[CrossRef]

1986 (2)

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[CrossRef]

1985 (1)

S. Gerstenkorn, P. Luc, and C. Amiot, “Analysis of the long range potential of iodine in the B 3Π0u+ state,” J. Phys. (Paris) 46, 355–364 (1985).
[CrossRef]

1984 (3)

J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
[CrossRef]

A. Morinaga, “Hyperfine structure and hyperfine coupling constant of molecular iodine,” Jpn. J. Appl. Phys. 23, 774–775 (1984).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
[CrossRef]

1982 (1)

M. Saute and M. Aubert-Frécon, “Calculated long-range potential-energy curves for the 23 molecular states of I2,” J. Chem. Phys. 77, 5639–5646 (1982).
[CrossRef]

1981 (5)

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. I. Theory,” J. Phys. (Paris) 42, 937–947 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. II. Experiments on natural and hyperfine predissociation,” J. Phys. (Paris) 42, 949–959 (1981).
[CrossRef]

C. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5 145 Å and 5 017 Å: main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, and S. Churassy, “Hyperfine structure of higher rovibrational levels in the iodine B state studied by Ar+ laser induced fluorescence,” Opt. Commun. 36, 354–358 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state. III. Experiments on magnetic predissociation,” J. Phys. (Paris) 42, 961–978 (1981).
[CrossRef]

1980 (1)

R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
[CrossRef]

1979 (2)

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Ab initio calculation of hyperfine and magnetic parameters in the I2B state,” Phys. Rev. Lett. 42, 883–887 (1979).
[CrossRef]

1978 (1)

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. (Paris) 39, 591–609 (1978).
[CrossRef]

1972 (1)

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

1952 (1)

N. F. Ramsey and E. M. Purcell, “Interactions between nuclear spins in molecules,” Phys. Rev. 85, 143L–144L (1952).
[CrossRef]

Amiot, C.

S. Gerstenkorn, P. Luc, and C. Amiot, “Analysis of the long range potential of iodine in the B 3Π0u+ state,” J. Phys. (Paris) 46, 355–364 (1985).
[CrossRef]

Aubert-Frécon, M.

M. Saute and M. Aubert-Frécon, “Calculated long-range potential-energy curves for the 23 molecular states of I2,” J. Chem. Phys. 77, 5639–5646 (1982).
[CrossRef]

Bacis, R.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
[CrossRef]

J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, and S. Churassy, “Hyperfine structure of higher rovibrational levels in the iodine B state studied by Ar+ laser induced fluorescence,” Opt. Commun. 36, 354–358 (1981).
[CrossRef]

R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
[CrossRef]

Barney, W. S.

W. S. Barney, C. M. Western, and K. C. Janda, “Measurement of the electronic wave function: separated atom wave function analysis of the R-dependent hyperfine constants of the iodine monochloride A state,” J. Chem. Phys. 113, 7211–7223 (2000).
[CrossRef]

Barwood, G. P.

C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, “A 633 nm iodine-stabilized diode-laser frequency standard,” Metrologia 36, 41–45 (1999).
[CrossRef]

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Bertinetto, F.

F. Bertinetto, P. Cordiale, S. Fontana, and G. B. Picotto, “Helium–neon lasers stabilized to iodine at 605-nm,” IEEE Trans. Instrum. Meas. 36, 609–612 (1987).
[CrossRef]

Blabla, J.

V. Špirko and J. Blabla, “Nuclear-quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular-iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

Bodermann, B.

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. D 19, 31–44 (2002).
[CrossRef]

Bordé, C. J.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

C. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5 145 Å and 5 017 Å: main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Broyer, M.

J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state. III. Experiments on magnetic predissociation,” J. Phys. (Paris) 42, 961–978 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. I. Theory,” J. Phys. (Paris) 42, 937–947 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. II. Experiments on natural and hyperfine predissociation,” J. Phys. (Paris) 42, 949–959 (1981).
[CrossRef]

R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Ab initio calculation of hyperfine and magnetic parameters in the I2B state,” Phys. Rev. Lett. 42, 883–887 (1979).
[CrossRef]

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. (Paris) 39, 591–609 (1978).
[CrossRef]

Camy, G.

C. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5 145 Å and 5 017 Å: main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Castano, F.

E. Martínez, M. T. Martínez, and F. Castano, “Iodine B 3Π0u+ state predissociation—evaluation of the interaction mechanisms for predissociated levels of the B-state,” J. Mol. Spectrosc. 128, 554–563 (1988).
[CrossRef]

Chen, L.

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

Chen, L. S.

Cheng, W.-Y.

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm): errata,” Opt. Lett. 27, 1076–1076 (2002).
[CrossRef]

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

W.-Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover resonances at 543 nm,” Opt. Commun. 156, 170–177 (1998).
[CrossRef]

Churassy, S.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
[CrossRef]

J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, and S. Churassy, “Hyperfine structure of higher rovibrational levels in the iodine B state studied by Ar+ laser induced fluorescence,” Opt. Commun. 36, 354–358 (1981).
[CrossRef]

R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
[CrossRef]

Clancy, J. A.

P. Gill and J. A. Clancy, “A microprocessor-controlled iodine-stabilized ion laser,” J. Phys. E 21, 213–218 (1988).
[CrossRef]

Cordiale, P.

F. Bertinetto, P. Cordiale, S. Fontana, and G. B. Picotto, “Helium–neon lasers stabilized to iodine at 605-nm,” IEEE Trans. Instrum. Meas. 36, 609–612 (1987).
[CrossRef]

de Jong, W. A.

W. A. de Jong, L. Visscher, and W. C. Nieuwpoort, “Relativistic and correlated calculations on the ground, excited, and ionized states of iodine,” J. Chem. Phys. 107, 9046–9058 (1997).
[CrossRef]

Decomps, B.

C. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5 145 Å and 5 017 Å: main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Descoubes, J.-P.

C. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5 145 Å and 5 017 Å: main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

Donovan, R. J.

P. J. Jewsbury, T. Ridley, K. P. Lawley, and R. J. Donovan, “Parity mixing in the valence states of I2 probed by optical–optical double-resonance excitation of ion-pair states—characterization of a new ion-pair state, H1u(3P1), and a valence state, c1g,” J. Mol. Spectrosc. 157, 33–49 (1993).
[CrossRef]

du Burck, F.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

Edwards, C. S.

C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, “A 633 nm iodine-stabilized diode-laser frequency standard,” Metrologia 36, 41–45 (1999).
[CrossRef]

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Fontana, S.

F. Bertinetto, P. Cordiale, S. Fontana, and G. B. Picotto, “Helium–neon lasers stabilized to iodine at 605-nm,” IEEE Trans. Instrum. Meas. 36, 609–612 (1987).
[CrossRef]

Foth, H. J.

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

Gagniere, J.

A. Razet, J. Gagniere, and P. Juncar, “Hyperfine-structure analysis of the 33P(6–3) line of 127I2 at 633 nm using a continuous-wave tunable dye-laser,” Metrologia 30, 61–65 (1993).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, and C. Amiot, “Analysis of the long range potential of iodine in the B 3Π0u+ state,” J. Phys. (Paris) 46, 355–364 (1985).
[CrossRef]

Gill, P.

C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, “A 633 nm iodine-stabilized diode-laser frequency standard,” Metrologia 36, 41–45 (1999).
[CrossRef]

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

P. Gill and J. A. Clancy, “A microprocessor-controlled iodine-stabilized ion laser,” J. Phys. E 21, 213–218 (1988).
[CrossRef]

Goncharov, A. N.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

Hall, J. L.

C. Ishibashi, J. Ye, and J. L. Hall, “Issues and applications in ultra-sensitive molecular spectroscopy,” in Methods for Ultrasensitive Detection II, C. W. Wilkerson, Jr., ed., Proc. SPIE 4634, 58–69 (2002).
[CrossRef]

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm): errata,” Opt. Lett. 27, 1076–1076 (2002).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Hartmann, F.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, and S. Churassy, “Hyperfine structure of higher rovibrational levels in the iodine B state studied by Ar+ laser induced fluorescence,” Opt. Commun. 36, 354–358 (1981).
[CrossRef]

Himbert, M.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

Holman, K. W.

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

Hong, F. L.

F. L. Hong and J. Ishikawa, “Hyperfine structures of the R(122) 35–0 and P(84) 33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

Hong, F.-L.

Ishibashi, C.

C. Ishibashi, J. Ye, and J. L. Hall, “Issues and applications in ultra-sensitive molecular spectroscopy,” in Methods for Ultrasensitive Detection II, C. W. Wilkerson, Jr., ed., Proc. SPIE 4634, 58–69 (2002).
[CrossRef]

Ishikawa, J.

F. L. Hong and J. Ishikawa, “Hyperfine structures of the R(122) 35–0 and P(84) 33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

Ito, N.

Janda, K. C.

W. S. Barney, C. M. Western, and K. C. Janda, “Measurement of the electronic wave function: separated atom wave function analysis of the R-dependent hyperfine constants of the iodine monochloride A state,” J. Chem. Phys. 113, 7211–7223 (2000).
[CrossRef]

Jewsbury, P. J.

P. J. Jewsbury, T. Ridley, K. P. Lawley, and R. J. Donovan, “Parity mixing in the valence states of I2 probed by optical–optical double-resonance excitation of ion-pair states—characterization of a new ion-pair state, H1u(3P1), and a valence state, c1g,” J. Mol. Spectrosc. 157, 33–49 (1993).
[CrossRef]

Jones, R. J.

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

Juncar, P.

A. Razet, J. Gagniere, and P. Juncar, “Hyperfine-structure analysis of the 33P(6–3) line of 127I2 at 633 nm using a continuous-wave tunable dye-laser,” Metrologia 30, 61–65 (1993).
[CrossRef]

Knöckel, H.

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. D 19, 31–44 (2002).
[CrossRef]

Koffend, J. B.

J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
[CrossRef]

J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
[CrossRef]

Lawley, K. P.

P. J. Jewsbury, T. Ridley, K. P. Lawley, and R. J. Donovan, “Parity mixing in the valence states of I2 probed by optical–optical double-resonance excitation of ion-pair states—characterization of a new ion-pair state, H1u(3P1), and a valence state, c1g,” J. Mol. Spectrosc. 157, 33–49 (1993).
[CrossRef]

Lehmann, J. C.

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state. III. Experiments on magnetic predissociation,” J. Phys. (Paris) 42, 961–978 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. II. Experiments on natural and hyperfine predissociation,” J. Phys. (Paris) 42, 949–959 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. I. Theory,” J. Phys. (Paris) 42, 937–947 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Ab initio calculation of hyperfine and magnetic parameters in the I2B state,” Phys. Rev. Lett. 42, 883–887 (1979).
[CrossRef]

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. (Paris) 39, 591–609 (1978).
[CrossRef]

Levenson, M. D.

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Lin, T.

W.-Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover resonances at 543 nm,” Opt. Commun. 156, 170–177 (1998).
[CrossRef]

Llorente, F. Rodriguez

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, and C. Amiot, “Analysis of the long range potential of iodine in the B 3Π0u+ state,” J. Phys. (Paris) 46, 355–364 (1985).
[CrossRef]

Ma, L. S.

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

Ma, L.-S.

Martínez, E.

E. Martínez, M. T. Martínez, and F. Castano, “Iodine B 3Π0u+ state predissociation—evaluation of the interaction mechanisms for predissociated levels of the B-state,” J. Mol. Spectrosc. 128, 554–563 (1988).
[CrossRef]

Martínez, M. T.

E. Martínez, M. T. Martínez, and F. Castano, “Iodine B 3Π0u+ state predissociation—evaluation of the interaction mechanisms for predissociated levels of the B-state,” J. Mol. Spectrosc. 128, 554–563 (1988).
[CrossRef]

Mercier, B.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

Morinaga, A.

Nieuwpoort, W. C.

W. A. de Jong, L. Visscher, and W. C. Nieuwpoort, “Relativistic and correlated calculations on the ground, excited, and ionized states of iodine,” J. Chem. Phys. 107, 9046–9058 (1997).
[CrossRef]

Pelissier, M.

C. Teichteil and M. Pelissier, “Relativistic calculations of excited states of molecular iodine,” Chem. Phys. 180, 1–18 (1994).
[CrossRef]

Picard, S.

Picotto, G. B.

F. Bertinetto, P. Cordiale, S. Fontana, and G. B. Picotto, “Helium–neon lasers stabilized to iodine at 605-nm,” IEEE Trans. Instrum. Meas. 36, 609–612 (1987).
[CrossRef]

Pique, J. P.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
[CrossRef]

J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, and S. Churassy, “Hyperfine structure of higher rovibrational levels in the iodine B state studied by Ar+ laser induced fluorescence,” Opt. Commun. 36, 354–358 (1981).
[CrossRef]

Purcell, E. M.

N. F. Ramsey and E. M. Purcell, “Interactions between nuclear spins in molecules,” Phys. Rev. 85, 143L–144L (1952).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

Ramsey, N. F.

N. F. Ramsey and E. M. Purcell, “Interactions between nuclear spins in molecules,” Phys. Rev. 85, 143L–144L (1952).
[CrossRef]

Razet, A.

A. Razet, J. Gagniere, and P. Juncar, “Hyperfine-structure analysis of the 33P(6–3) line of 127I2 at 633 nm using a continuous-wave tunable dye-laser,” Metrologia 30, 61–65 (1993).
[CrossRef]

Ridley, T.

P. J. Jewsbury, T. Ridley, K. P. Lawley, and R. J. Donovan, “Parity mixing in the valence states of I2 probed by optical–optical double-resonance excitation of ion-pair states—characterization of a new ion-pair state, H1u(3P1), and a valence state, c1g,” J. Mol. Spectrosc. 157, 33–49 (1993).
[CrossRef]

Robertsson, L.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Rowley, W. R. C.

C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, “A 633 nm iodine-stabilized diode-laser frequency standard,” Metrologia 36, 41–45 (1999).
[CrossRef]

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

Saute, M.

M. Saute and M. Aubert-Frécon, “Calculated long-range potential-energy curves for the 23 molecular states of I2,” J. Chem. Phys. 77, 5639–5646 (1982).
[CrossRef]

Schawlow, A. L.

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Shy, J. T.

W.-Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover resonances at 543 nm,” Opt. Commun. 156, 170–177 (1998).
[CrossRef]

Simonsen, H. R.

H. R. Simonsen, “Iodine-stabilized extended cavity diode laser at λ=633nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
[CrossRef]

Spieweck, F.

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

Špirko, V.

V. Špirko and J. Blabla, “Nuclear-quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular-iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

Sugiyama, K.

Teichteil, C.

C. Teichteil and M. Pelissier, “Relativistic calculations of excited states of molecular iodine,” Chem. Phys. 180, 1–18 (1994).
[CrossRef]

Tiemann, E.

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. D 19, 31–44 (2002).
[CrossRef]

Vergès, J.

R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
[CrossRef]

Vigué, J.

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state. III. Experiments on magnetic predissociation,” J. Phys. (Paris) 42, 961–978 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. I. Theory,” J. Phys. (Paris) 42, 937–947 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. II. Experiments on natural and hyperfine predissociation,” J. Phys. (Paris) 42, 949–959 (1981).
[CrossRef]

R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Ab initio calculation of hyperfine and magnetic parameters in the I2B state,” Phys. Rev. Lett. 42, 883–887 (1979).
[CrossRef]

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. (Paris) 39, 591–609 (1978).
[CrossRef]

Visscher, L.

W. A. de Jong, L. Visscher, and W. C. Nieuwpoort, “Relativistic and correlated calculations on the ground, excited, and ionized states of iodine,” J. Chem. Phys. 107, 9046–9058 (1997).
[CrossRef]

Wallerand, J.-P.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

Western, C. M.

W. S. Barney, C. M. Western, and K. C. Janda, “Measurement of the electronic wave function: separated atom wave function analysis of the R-dependent hyperfine constants of the iodine monochloride A state,” J. Chem. Phys. 113, 7211–7223 (2000).
[CrossRef]

Ye, J.

C. Ishibashi, J. Ye, and J. L. Hall, “Issues and applications in ultra-sensitive molecular spectroscopy,” in Methods for Ultrasensitive Detection II, C. W. Wilkerson, Jr., ed., Proc. SPIE 4634, 58–69 (2002).
[CrossRef]

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm): errata,” Opt. Lett. 27, 1076–1076 (2002).
[CrossRef]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Yoon, T. H.

Appl. Phys. B (1)

R. J. Jones, W.-Y. Cheng, K. W. Holman, L. Chen, J. L. Hall, and J. Ye, “Absolute-frequency measurement of the iodine-based length standard at 514.67 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

Chem. Phys. (1)

C. Teichteil and M. Pelissier, “Relativistic calculations of excited states of molecular iodine,” Chem. Phys. 180, 1–18 (1994).
[CrossRef]

Chem. Phys. Lett. (1)

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[CrossRef]

Eur. Phys. D (2)

B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum,” Eur. Phys. D 19, 31–44 (2002).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and C. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. D 6, 63–76 (1999).

IEEE Trans. Instrum. Meas. (3)

H. R. Simonsen, “Iodine-stabilized extended cavity diode laser at λ=633nm,” IEEE Trans. Instrum. Meas. 46, 141–144 (1997).
[CrossRef]

F. Bertinetto, P. Cordiale, S. Fontana, and G. B. Picotto, “Helium–neon lasers stabilized to iodine at 605-nm,” IEEE Trans. Instrum. Meas. 36, 609–612 (1987).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. Chem. Phys. (5)

M. Saute and M. Aubert-Frécon, “Calculated long-range potential-energy curves for the 23 molecular states of I2,” J. Chem. Phys. 77, 5639–5646 (1982).
[CrossRef]

W. A. de Jong, L. Visscher, and W. C. Nieuwpoort, “Relativistic and correlated calculations on the ground, excited, and ionized states of iodine,” J. Chem. Phys. 107, 9046–9058 (1997).
[CrossRef]

J. P. Pique, R. Bacis, M. Broyer, S. Churassy, and J. B. Koffend, “Calculation of the magnetic hyperfine interaction in the E and X states of iodine with the separated-atom theory,” J. Chem. Phys. 80, 1390–1393 (1984).
[CrossRef]

W. S. Barney, C. M. Western, and K. C. Janda, “Measurement of the electronic wave function: separated atom wave function analysis of the R-dependent hyperfine constants of the iodine monochloride A state,” J. Chem. Phys. 113, 7211–7223 (2000).
[CrossRef]

R. Bacis, M. Broyer, S. Churassy, J. Vergès, and J. Vigué, “eQq measurements in the X, 1g, 0g+, and B state of I2: a test of the electronic molecular eigenfunctions,” J. Chem. Phys. 73, 2641–2650 (1980).
[CrossRef]

J. Mol. Spectrosc. (3)

E. Martínez, M. T. Martínez, and F. Castano, “Iodine B 3Π0u+ state predissociation—evaluation of the interaction mechanisms for predissociated levels of the B-state,” J. Mol. Spectrosc. 128, 554–563 (1988).
[CrossRef]

V. Špirko and J. Blabla, “Nuclear-quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular-iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
[CrossRef]

P. J. Jewsbury, T. Ridley, K. P. Lawley, and R. J. Donovan, “Parity mixing in the valence states of I2 probed by optical–optical double-resonance excitation of ion-pair states—characterization of a new ion-pair state, H1u(3P1), and a valence state, c1g,” J. Mol. Spectrosc. 157, 33–49 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (Paris) (8)

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state. III. Experiments on magnetic predissociation,” J. Phys. (Paris) 42, 961–978 (1981).
[CrossRef]

S. Gerstenkorn, P. Luc, and C. Amiot, “Analysis of the long range potential of iodine in the B 3Π0u+ state,” J. Phys. (Paris) 46, 355–364 (1985).
[CrossRef]

C. J. Bordé, G. Camy, B. Decomps, and J.-P. Descoubes, “High precision saturation spectroscopy of 127I2 with argon lasers at 5 145 Å and 5 017 Å: main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. I. Theory,” J. Phys. (Paris) 42, 937–947 (1981).
[CrossRef]

J. Vigué, M. Broyer, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2B state. II. Experiments on natural and hyperfine predissociation,” J. Phys. (Paris) 42, 949–959 (1981).
[CrossRef]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[CrossRef]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[CrossRef]

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. (Paris) 39, 591–609 (1978).
[CrossRef]

J. Phys. E (1)

P. Gill and J. A. Clancy, “A microprocessor-controlled iodine-stabilized ion laser,” J. Phys. E 21, 213–218 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Morinaga, “Hyperfine structure and hyperfine coupling constant of molecular iodine,” Jpn. J. Appl. Phys. 23, 774–775 (1984).
[CrossRef]

Metrologia (3)

C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, “A 633 nm iodine-stabilized diode-laser frequency standard,” Metrologia 36, 41–45 (1999).
[CrossRef]

A. Razet, J. Gagniere, and P. Juncar, “Hyperfine-structure analysis of the 33P(6–3) line of 127I2 at 633 nm using a continuous-wave tunable dye-laser,” Metrologia 30, 61–65 (1993).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

Opt. Commun. (4)

F. L. Hong and J. Ishikawa, “Hyperfine structures of the R(122) 35–0 and P(84) 33–0 transitions of 127I2 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodriguez Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, and S. Churassy, “Hyperfine structure of higher rovibrational levels in the iodine B state studied by Ar+ laser induced fluorescence,” Opt. Commun. 36, 354–358 (1981).
[CrossRef]

W.-Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover resonances at 543 nm,” Opt. Commun. 156, 170–177 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

N. F. Ramsey and E. M. Purcell, “Interactions between nuclear spins in molecules,” Phys. Rev. 85, 143L–144L (1952).
[CrossRef]

Phys. Rev. A (1)

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

J. Vigué, M. Broyer, and J. C. Lehmann, “Ab initio calculation of hyperfine and magnetic parameters in the I2B state,” Phys. Rev. Lett. 42, 883–887 (1979).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801 (2001).
[CrossRef]

J. P. Pique, F. Hartmann, R. Bacis, S. Churassy, and J. B. Koffend, “Hyperfine-induced ungerade–gerade symmetry breaking in a homonuclear diatomic molecule near a dissociation limit: 127I2 at the 2P3/22P1/2 limit,” Phys. Rev. Lett. 52, 267–270 (1984).
[CrossRef]

Proc. SPIE (1)

C. Ishibashi, J. Ye, and J. L. Hall, “Issues and applications in ultra-sensitive molecular spectroscopy,” in Methods for Ultrasensitive Detection II, C. W. Wilkerson, Jr., ed., Proc. SPIE 4634, 58–69 (2002).
[CrossRef]

Other (2)

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode 14800−1 –20000cm−1 (Editions u CNRS, Paris, 1985).

R. J. Le Roy, “LEVEL 7.5 : A computer program for solving the radial Schrödinger equation for bound and quasibound levels,” University of Waterloo Chemical Physics Research Rep. CP-655 (2002). The source code and manual for this program may be obtained from the Computer Programs link on the www site http://leroy.uwaterloo.ca.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of saturated-absorption spectroscopy in the wavelength range 500–517 nm. A frequency-doubled Ti:sapphire laser is stabilized by a reference cavity and scanned by a rf synthesizer. Hyperfine spectra are extracted by the FM sideband technique. Introducing a self-referenced optical frequency comb into the system significantly simplifies the absolute-frequency calibration. AOMs, acousto-optic modulators; BF, birefringent filter; BW, Brewster window plate; EOM, electro-optic modulator; OD, optical diode; PBS, polarization beam splitter; PD, photodiode; SHG, second-harmonic generator; λ/4, quarter-wave plate; ϕ, phase delay.

Fig. 2
Fig. 2

Rovibrational dependence of eqQB. Each solid line is the linear fit in J (J+1) of experimental data that belong to one vibrational level, v(v is indicated as a number attached to each line). Experimental data (squares and open circles) show abnormal variations near v=57, 59. The vibrational dependence of eqQB reverses its trend after v=60 and overlaps that of lower v levels. Also, in the region v=5760 several rovibrational levels experience strong perturbation from the 1g(1g) state; thus eqQB for these levels are not shown in the figure.

Fig. 3
Fig. 3

Semilog plot of rovibrational dependence of CB. Each solid line, calculated from interpolation function CB(R) [see Fig. 7(b) below], is the J dependence for one vibrational level v(v is indicated as a number attached to each line). Unlike eqQB, dB, and δB, CB does not have abnormal variations near v=57, 59 because the gyroscopic Hamiltonian, which is involved only in CB, cannot couple the B and 1g(1g) states.

Fig. 4
Fig. 4

Semilog plot of rovibrational dependence of dB and δB. Note that the vertical scale has been inverted for dB. Each solid line is the linear fit in J (J+1) of experimental data that belong to one vibrational level, v(v is indicated as a number attached to each line). Experimental data (squares and open circles) show abnormal variations near v=57, 59. In the region v=5760 several rovibrational levels experience strong perturbation from the 1g(1g) state; thus hyperfine parameters for these levels are not shown in the figure.

Fig. 5
Fig. 5

Strong ug perturbation observed at transition P(84) 60–0. (a) The whole spectrum; the part of interest (700–920 MHz) is expanded and replotted in (b), where b1b4 arise from ug mixing between the B and the 1g(1g) states and b2 is the crossover of b1 and b3. In (a) c7c15 are identified as lines of a neighboring transition R(30) 64–1, and d1, left of a14, belongs to another transition, P(81) 59–0. The vertical bars labeled a1a15 indicate roughly the hyperfine spectrum that the P(84) 60–0 transition would assume if there were no such strong perturbation from the 1g(1g) state. Note that the 1g(1g) state is also designated 1g or c1g in the literature.

Fig. 6
Fig. 6

Vibrational dependence of the B-state hyperfine parameters eqQB, CB, dB, and δB. Note that a semilog plot is used for CB, dB, and δB. The steep trend near the dissociation energy is due to the perturbations from the electronic states converging with the B state to the second dissociation limit:  2P3/2+2P1/2. See text for details.

Fig. 7
Fig. 7

R dependence of hyperfine operators eqQB(R), CB(R), dB(R), and δB(R). These hyperfine operators are obtained by inversion of the expression OvJ=vJ|O(R)|vJ, where O represents one of the hyperfine parameters. Insets are residual errors of the interpolation. (a), (c), (d) Solid and dashed curves are fits up to v=55 and v=70, respectively. The fit in (b) is up to v=70. The large residual errors for eqQB, dB, and δB in the region 55<v70 are due to strong perturbation from the 1g(1g) state.

Fig. 8
Fig. 8

eqQB, CB, dB, and δB versus R centroid vJ|R|vJ. Solid curves were calculated from the interpolation functions for these hyperfine parameters. The data presented here cover a relatively large range of internuclear separation and join the previous results at both small and large internuclear separations. The visible scatter of the data points in eqQB, dB, and δB near 5 Å is due to the strong perturbation from the 1g(1g) state.

Tables (2)

Tables Icon

Table 1 B-State Effective Hyperfine Parameters Derived from the Measurement of  127I2 Rovibrational Transitions in the Wavelength Range 500–517 nma

Tables Icon

Table 2 Vibration-Removed Interpolation Function eqQB(R) a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Hhf=Hhf(a)+Hhf(b)+Hhf(a, b),
Hhf,eff=HeQq+HSR+HTSS+HSSS+He+Hf+Hh+HhH,
Ω, IJF|Hhf,eff|Ω, IJF
=eqQgeqQ+CgSR+dgTSS+δgSSS+ege+fgf+hgh+hHghH,
CB(v, J)=CD(v, J)-Ωv V0V1E0u+vJ-EΩvJ+ V0V1E0u+vJ-EΩJρ(EΩJ)dEΩJ.
|1=α|B,vJIF+β|1g,vJεF,
|2=-β|B,vJIF+α|1g,vJεF,

Metrics