Abstract

We show that electromagnetically induced transparency suppresses nonlinear absorption of all orders in a multilevel atomic system and leads to selective, multiphoton excitation of resonantly coupled atomic states. Under appropriate conditions, higher-order nonlinear absorption becomes dominant and selective steady-state population inversion is created among the resonantly coupled states.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Carroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys. Rev. A 36, 724–729 (1987).
    [CrossRef] [PubMed]
  2. P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993).
    [CrossRef] [PubMed]
  3. A. V. Smith, “Numerical-studies of adiabatic population inversion in multilevel systems,” J. Opt. Soc. Am. B 9, 1543–1551 (1992).
    [CrossRef]
  4. W. Suptitz, B. C. Duncan, and P. L. Gould, “Efficient 5D excitation of trapped Rb atoms using pulses of diode-laser light in the counterintuitive order,” J. Opt. Soc. Am. B 14, 1001–1005 (1997).
    [CrossRef]
  5. K. Bergmann, T. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998), and references therein.
    [CrossRef]
  6. S. E. Harris, “Electromagentically induced transparency,” Phys. Today 50 (7), 36–37 (1997), and references therein.
    [CrossRef]
  7. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 257–354.
  8. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef] [PubMed]
  9. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
    [CrossRef] [PubMed]
  10. O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
    [CrossRef] [PubMed]
  11. O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
    [CrossRef]
  12. M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
    [CrossRef]
  13. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
    [CrossRef] [PubMed]
  14. M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
    [CrossRef] [PubMed]
  15. M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
    [CrossRef] [PubMed]
  16. D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221–229 (2001).
    [CrossRef]
  17. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
    [CrossRef]
  18. A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, “Enhancement of Kerr nonlinearity by multiphoton coherence,” Opt. Lett. 28, 96–98 (2003).
    [CrossRef] [PubMed]
  19. A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
    [CrossRef]
  20. Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in a resonant coherent medium,” Opt. Lett. 28, 631–633 (2003).
    [CrossRef] [PubMed]
  21. Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing via EIT induced suppression of nonlinear photon absorptions,” Phys. Rev. A 67, 013811 (2003).
    [CrossRef]
  22. B. W. Shore, “Gating of population flow in resonant multiphoton excitation,” Phys. Rev. A 29, 1578–1582 (1984).
    [CrossRef]
  23. G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
    [CrossRef] [PubMed]
  24. J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
    [CrossRef]
  25. M. Yan, E. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
    [CrossRef]
  26. A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
    [CrossRef]

2003 (4)

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing via EIT induced suppression of nonlinear photon absorptions,” Phys. Rev. A 67, 013811 (2003).
[CrossRef]

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, “Enhancement of Kerr nonlinearity by multiphoton coherence,” Opt. Lett. 28, 96–98 (2003).
[CrossRef] [PubMed]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in a resonant coherent medium,” Opt. Lett. 28, 631–633 (2003).
[CrossRef] [PubMed]

2002 (2)

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

2001 (2)

D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221–229 (2001).
[CrossRef]

M. Yan, E. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

2000 (1)

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

1998 (1)

K. Bergmann, T. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998), and references therein.
[CrossRef]

1997 (2)

1996 (2)

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef] [PubMed]

1995 (2)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

1993 (1)

P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993).
[CrossRef] [PubMed]

1992 (4)

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

A. V. Smith, “Numerical-studies of adiabatic population inversion in multilevel systems,” J. Opt. Soc. Am. B 9, 1543–1551 (1992).
[CrossRef]

1991 (1)

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef] [PubMed]

1989 (1)

M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef] [PubMed]

1987 (1)

C. E. Carroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys. Rev. A 36, 724–729 (1987).
[CrossRef] [PubMed]

1984 (1)

B. W. Shore, “Gating of population flow in resonant multiphoton excitation,” Phys. Rev. A 29, 1578–1582 (1984).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

Bergmann, K.

K. Bergmann, T. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998), and references therein.
[CrossRef]

Carroll, C. E.

C. E. Carroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys. Rev. A 36, 724–729 (1987).
[CrossRef] [PubMed]

Chen, K.

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

de Echaniz, S. R.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Dun, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Duncan, B. C.

Dunn, M. H.

D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221–229 (2001).
[CrossRef]

Durrant, A. V.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

Fulton, D. J.

D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221–229 (2001).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Gao, J.

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Gavrielides, A.

M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Gould, P. L.

Greentree, A. D.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Guo, X.

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagentically induced transparency,” Phys. Today 50 (7), 36–37 (1997), and references therein.
[CrossRef]

Harshawardhan, W.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

Hioe, F. T.

C. E. Carroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys. Rev. A 36, 724–729 (1987).
[CrossRef] [PubMed]

Hussein, Z.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef] [PubMed]

Jiang, Y.

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Keitel, C. H.

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

Kocharovskaya, O.

O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

Kurizki, G.

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Marangos, J. P.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Matsko, A. B.

A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, “Enhancement of Kerr nonlinearity by multiphoton coherence,” Opt. Lett. 28, 96–98 (2003).
[CrossRef] [PubMed]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
[CrossRef]

McGloin, D.

D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221–229 (2001).
[CrossRef]

Meschede, D.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef] [PubMed]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Novikova, I.

Petrosyan, D.

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

Pillet, P.

P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993).
[CrossRef] [PubMed]

Richards, D.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Rickey, E.

M. Yan, E. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Rostovsev, Y. V.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Saldana, J.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing via EIT induced suppression of nonlinear photon absorptions,” Phys. Rev. A 67, 013811 (2003).
[CrossRef]

Schmidt, O.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef] [PubMed]

Scully, M. O.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef] [PubMed]

M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef] [PubMed]

Segal, D. M.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Shore, B. W.

K. Bergmann, T. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998), and references therein.
[CrossRef]

B. W. Shore, “Gating of population flow in resonant multiphoton excitation,” Phys. Rev. A 29, 1578–1582 (1984).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Smith, A. V.

Su, C.

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

Suptitz, W.

Theuer, T.

K. Bergmann, T. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998), and references therein.
[CrossRef]

Ulrich, B. T.

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

Vaccaro, J. A.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Valentin, X.

P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993).
[CrossRef] [PubMed]

Wang, D.

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Welch, G. R.

Wen, L.

Wu, Y.

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in a resonant coherent medium,” Opt. Lett. 28, 631–633 (2003).
[CrossRef] [PubMed]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing via EIT induced suppression of nonlinear photon absorptions,” Phys. Rev. A 67, 013811 (2003).
[CrossRef]

Wynands, R.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Yan, M.

M. Yan, E. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Yang, S.

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Ye, C. Y.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Yu, J.

P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993).
[CrossRef] [PubMed]

Yuan, R. L.

P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993).
[CrossRef] [PubMed]

Zhao, B.

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Zhu, S.

M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef] [PubMed]

Zhu, S. Y.

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

Zhu, Y.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing via EIT induced suppression of nonlinear photon absorptions,” Phys. Rev. A 67, 013811 (2003).
[CrossRef]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in a resonant coherent medium,” Opt. Lett. 28, 631–633 (2003).
[CrossRef] [PubMed]

M. Yan, E. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Zubairy, M. S.

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221–229 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Rep. (2)

O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

Phys. Rev. A (11)

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef] [PubMed]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002).
[CrossRef]

C. E. Carroll and F. T. Hioe, “Three-state model driven by two laser beams,” Phys. Rev. A 36, 724–729 (1987).
[CrossRef] [PubMed]

P. Pillet, X. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993).
[CrossRef] [PubMed]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing via EIT induced suppression of nonlinear photon absorptions,” Phys. Rev. A 67, 013811 (2003).
[CrossRef]

B. W. Shore, “Gating of population flow in resonant multiphoton excitation,” Phys. Rev. A 29, 1578–1582 (1984).
[CrossRef]

J. Gao, S. Yang, D. Wang, X. Guo, K. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

M. Yan, E. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovsev, A. B. Matsko, and M. O. Scully, “Obervation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65, 043817 (2002).
[CrossRef]

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, “Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms,” Phys. Rev. A 67, 023818 (2003).
[CrossRef]

M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989).
[CrossRef] [PubMed]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagentically induced transparency,” Phys. Today 50 (7), 36–37 (1997), and references therein.
[CrossRef]

Rev. Mod. Phys. (1)

K. Bergmann, T. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998), and references therein.
[CrossRef]

Other (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 257–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Resonantly coupled N+1-level system with single-photon coupling between neighboring states; i.e., states |i-1 and |i are coupled by coherent field ωi with Rabi frequency 2Ωi (i=1-N). (b) Resonantly coupled N+1-level system with single-photon as well as multiphoton coupling between neighboring states.

Fig. 2
Fig. 2

(a) Relative absorption rates for pump laser ωi [i=1, 2, 3, corresponding to Im(p01), Im(p12), and Im(p23), respectively] and (b) population probabilities Pi (i=13) in the five-level system (N=3) versus frequency detuning Δc=Δ1 of the first pump laser [all other lasers are on resonance with their respective transitions, i.e., Δj=0 (i=2, 3), Δ1c=0]. Single-photon absorption rate Im(p01) is proportional to P1, two-photon absorption rate Im(p12) is proportional to P2, and three-photon absorption rate Im(p23) is proportional to P3. Other parameter values are Ωc=0.5γ1, Ω1=Ω2=Ω2=0.02γ1, γ2=0.2γ1, γ4=0.1γ2, and γ1=0.001γ1.

Fig. 3
Fig. 3

(a), (b) Population probabilities Pi (i=c, 13) and (c), (d) normalized population inversion i-j=(Pi-Pj)/(Pi+Pj) in the five-level system (N=3) versus frequency detuning Δc=Δ1 of the first pump laser [all other lasers are on resonance with their respective transitions; i.e., Δj=0 (i=2, 3), Δ1c=0]. The parameter values are Ωc=γ1, Ω1=0.05γ1, Ω2=Ω3=0.5γ1, γ2=0.14γ1, γ3=0.015γ1, and γc=0.001γ1.

Fig. 4
Fig. 4

(a) Population probabilities Pi (i=c, 14) and (b) normalized population inversion i-j=(Pi-Pj)/(Pi+Pj) in the six-level system (N=5) versus frequency detuning Δ1 of the first pump laser [all other lasers are on resonance with their respective transitions, i.e., Δj=0 (i=2, 3, 4), Δ1c=0]. The parameter values are Ωc=γ1, Ω1=0.05γ1, Ω2=Ω3=Ω4=0.6γ1, γ2=0.2γ1, γ3=γ4=0.1γ1, and γc=0.001γ1.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ddt+γc-iΔcAc=iΩc*A1,
ddt+γ1-iΔ1A1=iΩ1A0+iΩcAc+iΩ2*A2,
ddt+γn-iΔnAn=iΩnAn-1+iΩn+1*An+1,
AN+10,n=2,,N,
Ac=[(Δ˜2Δ˜3-|Ω3|2)Ωc*Ω1]/S,
A1=-Δ˜c(Δ˜2Δ˜3-|Ω3|2)Ω1/S,
A2=Ω1Ω2Δ˜cΔ˜3/S,
A3=-Δ˜cΩ1Ω2Ω3/S,
P1=Δc2Ω12[(|Ω3|2-Δ12+γ2γ3)2+Δ12(γ2+γ3)2]/|S|2,
Pc=Ωc2Ω12[(|Ω3|2-Δ12+γ2γ3)2+Δ12(γ2+γ3)2]/|S|2,
P2=Ω12Ω22Δc2(Δ12+γ32)/|S|2,
P3=Ω12Ω22Ω32Δc2/|S|2,
Ω32>γ32+Δ12(P3>P2),
Ω22>[(|Ω3|2-Δ12+γ2γ3)2+Δ12(γ2+γ3)2]Δ12+γ32
(P2>P1),
Δ12>Ωc2(P1>Pc),
Ω22>Ωc2[(|Ω3|2-Δ12+γ2γ3)2+Δ12(γ2+γ3)2]Ω32Δc2
(P3>Pc).

Metrics