Abstract

We show that electromagnetically induced transparency suppresses nonlinear absorption of all orders in a multilevel atomic system and leads to selective, multiphoton excitation of resonantly coupled atomic states. Under appropriate conditions, higher-order nonlinear absorption becomes dominant and selective steady-state population inversion is created among the resonantly coupled states.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Nonlinear excitation by quantum interference in a Doppler-broadened rubidium atomic system

N. Mulchan, D. G. Ducreay, Rodolfo Pina, Min Yan, and Yifu Zhu
J. Opt. Soc. Am. B 17(5) 820-826 (2000)

Numerical studies of adiabatic population inversion in multilevel systems

A. V. Smith
J. Opt. Soc. Am. B 9(9) 1543-1551 (1992)

Phase control of light amplification with dynamically irreversible pathways of population transfer in a Λ system

Shi Yuan, Jin-Hui Wu, Jin-Yue Gao, and Chun-Liu Pan
J. Opt. Soc. Am. B 19(5) 1185-1188 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription