Abstract

We investigate the ultraviolet- (UV-) light-induced two-color photorefractivity in a near-stoichiometric LiNbO3 crystal doped with Mg above the damage-resistant threshold concentration. Measurements of holographic recording and optical fixing dynamics with a 365-nm gating beam show that complementary shallow and deep gratings are formed during recording and that at least four defect centers are involved in the two-color holographic recording process. It is confirmed that UV-light-induced defect centers O- responsible for the broadband absorption changes act as shallow centers in UV-light-gating two-color holography. These findings indicate that the physical mechanism of the UV-light-gating two-color photorefractive effect in the crystal is essentially different from that of the recently reported two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3 with a 488-nm gating beam [Appl. Opt. 41, 4891 (2002)].

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
    [CrossRef]
  2. G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am. 70, 631 (1980).
  3. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
    [CrossRef]
  4. B. C. Grabmaier, W. Wersing, and W. Koestler, “Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure,” J. Cryst. Growth 110, 339–347 (1991).
    [CrossRef]
  5. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990).
    [CrossRef] [PubMed]
  6. T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. Sect. 14, 37–43 (1992).
    [CrossRef]
  7. T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
    [CrossRef]
  8. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction–LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
    [CrossRef]
  9. T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
    [CrossRef]
  10. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23, 1892–1894 (1998).
    [CrossRef]
  11. J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
    [CrossRef]
  12. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
    [CrossRef]
  13. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
    [CrossRef]
  14. G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
    [CrossRef]
  15. G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
    [CrossRef]
  16. S. Sunarno, Y. Tomita, and G. Zhang, “Light-induced absorption changes in In-doped congruent LiNbO3,” Appl. Phys. Lett. 81, 4505–4507 (2002).
    [CrossRef]
  17. G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In, Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
    [CrossRef]
  18. J. Xu, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, F. Song, Y. Kong, X. Chen, H. Qiao, J. Yao, and Z. Lijuan, “Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals,” Opt. Lett. 25, 129–131 (2000).
    [CrossRef]
  19. A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002).
    [CrossRef] [PubMed]
  20. G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
    [CrossRef]
  21. D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect in LiNbO3,” Appl. Phys. 15, 153–156 (1978).
    [CrossRef]
  22. G. Zhang and Y. Tomita, “Nondestructive two-color holography in LiNbO3:Mg by use of ultraviolet-induced absorption,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, C. G. Righini and A. Consortini, eds., Proc. SPIE 4829, 349–350 (2003).
    [CrossRef]
  23. G. Zhang and Y. Tomita, “Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
    [CrossRef]
  24. M. Wöhlecke, G. Corradi, and K. Betzler, “Optical method to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
    [CrossRef]
  25. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
    [CrossRef]
  26. I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
    [CrossRef]
  27. Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys. 40, L1035–L1037 (2001).
    [CrossRef]
  28. R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992).
    [CrossRef]
  29. F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
    [CrossRef]
  30. R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
    [CrossRef]
  31. A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  32. O. Momtahan and A. Adibi, “Global optimization of sensitivity and dynamic range for two-center holographic recording,” J. Opt. Soc. Am. B 20, 449–461 (2003).
    [CrossRef]
  33. L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
    [CrossRef]

2003 (4)

G. Zhang and Y. Tomita, “Nondestructive two-color holography in LiNbO3:Mg by use of ultraviolet-induced absorption,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, C. G. Righini and A. Consortini, eds., Proc. SPIE 4829, 349–350 (2003).
[CrossRef]

G. Zhang and Y. Tomita, “Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[CrossRef]

I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
[CrossRef]

O. Momtahan and A. Adibi, “Global optimization of sensitivity and dynamic range for two-center holographic recording,” J. Opt. Soc. Am. B 20, 449–461 (2003).
[CrossRef]

2002 (4)

A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002).
[CrossRef] [PubMed]

S. Sunarno, Y. Tomita, and G. Zhang, “Light-induced absorption changes in In-doped congruent LiNbO3,” Appl. Phys. Lett. 81, 4505–4507 (2002).
[CrossRef]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In, Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[CrossRef]

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[CrossRef]

2001 (4)

A. Adibi, K. Buse, and D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
[CrossRef]

Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys. 40, L1035–L1037 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

2000 (3)

G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

J. Xu, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, F. Song, Y. Kong, X. Chen, H. Qiao, J. Yao, and Z. Lijuan, “Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals,” Opt. Lett. 25, 129–131 (2000).
[CrossRef]

1998 (1)

1996 (2)

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical method to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
[CrossRef]

1995 (3)

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction–LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

1994 (1)

1992 (3)

R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992).
[CrossRef]

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. Sect. 14, 37–43 (1992).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

1991 (2)

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

B. C. Grabmaier, W. Wersing, and W. Koestler, “Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure,” J. Cryst. Growth 110, 339–347 (1991).
[CrossRef]

1990 (1)

1984 (2)

L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

1980 (1)

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am. 70, 631 (1980).

1978 (2)

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect in LiNbO3,” Appl. Phys. 15, 153–156 (1978).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Adibi, A.

Agulló-López, F.

J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Alcázar-de-Velasco, A.

J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Angelow, G.

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992).
[CrossRef]

Arizmendi, L.

L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Asano, H.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Betzler, K.

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical method to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

Böwer, R.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Buse, K.

Cabrera, J. M.

J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Carrascosa, A. M.

J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Chen, X.

Corradi, G.

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical method to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

Dmitriev, M. S.

I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
[CrossRef]

Engel, T.

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

Fejer, M. M.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Fischer, C.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Furukawa, Y.

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Grabmaier, B. C.

B. C. Grabmaier, W. Wersing, and W. Koestler, “Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure,” J. Cryst. Growth 110, 339–347 (1991).
[CrossRef]

Grabmaier, C. B.

R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992).
[CrossRef]

Hatano, H.

Hayashi, T.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Hilgenberg, D.

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

Hoshi, M.

Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys. 40, L1035–L1037 (2001).
[CrossRef]

G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
[CrossRef]

Iyi, N.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Izumi, F.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jermann, F.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Jian, J.

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am. 70, 631 (1980).

Jungen, R.

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992).
[CrossRef]

Kim, I. W.

I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
[CrossRef]

Kimura, S.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kitamura, K.

A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891–4896 (2002).
[CrossRef] [PubMed]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett. 23, 1892–1894 (1998).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Koestler, W.

B. C. Grabmaier, W. Wersing, and W. Koestler, “Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure,” J. Cryst. Growth 110, 339–347 (1991).
[CrossRef]

Kong, Y.

Krätzig, E.

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Kurz, H.

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect in LiNbO3,” Appl. Phys. 15, 153–156 (1978).
[CrossRef]

Laeri, F.

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992).
[CrossRef]

Li, F.

Lijuan, Z.

Liu, S.

Macfarlane, R. M.

Momtahan, O.

Niwa, K.

Orlowski, R.

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Pichugin, V. F.

I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
[CrossRef]

Pryalkin, V. I.

Psaltis, D.

Qiao, H.

Rams, J.

J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Razumovski, N.

T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
[CrossRef]

Razumovski, N. V.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Reichert, A.

T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
[CrossRef]

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Rubinina, N.

T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

Rubinina, N. M.

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. Sect. 14, 37–43 (1992).
[CrossRef]

T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990).
[CrossRef] [PubMed]

Schirmer, O. F.

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect in LiNbO3,” Appl. Phys. 15, 153–156 (1978).
[CrossRef]

Song, F.

Sun, Q.

Sunarno, S.

S. Sunarno, Y. Tomita, and G. Zhang, “Light-induced absorption changes in In-doped congruent LiNbO3,” Appl. Phys. Lett. 81, 4505–4507 (2002).
[CrossRef]

G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
[CrossRef]

Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys. 40, L1035–L1037 (2001).
[CrossRef]

Takekawa, S.

Thiemann, O.

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Tomita, Y.

G. Zhang and Y. Tomita, “Nondestructive two-color holography in LiNbO3:Mg by use of ultraviolet-induced absorption,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, C. G. Righini and A. Consortini, eds., Proc. SPIE 4829, 349–350 (2003).
[CrossRef]

G. Zhang and Y. Tomita, “Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[CrossRef]

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[CrossRef]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In, Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[CrossRef]

S. Sunarno, Y. Tomita, and G. Zhang, “Light-induced absorption changes in In-doped congruent LiNbO3,” Appl. Phys. Lett. 81, 4505–4507 (2002).
[CrossRef]

G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
[CrossRef]

Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys. 40, L1035–L1037 (2001).
[CrossRef]

G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

Vietze, U.

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

Volk, T.

T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

Volk, T. R.

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. Sect. 14, 37–43 (1992).
[CrossRef]

T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990).
[CrossRef] [PubMed]

von der Linde, D.

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect in LiNbO3,” Appl. Phys. 15, 153–156 (1978).
[CrossRef]

Wang, H.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction–LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Wen, J.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction–LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Wersing, W.

B. C. Grabmaier, W. Wersing, and W. Koestler, “Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure,” J. Cryst. Growth 110, 339–347 (1991).
[CrossRef]

Winnacker, A.

Wöhlecke, M.

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical method to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Wu, Z.

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am. 70, 631 (1980).

Würtz, M.

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

Xu, J.

Xu, W.

G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
[CrossRef]

G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

Yakovlev, V. Y.

I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
[CrossRef]

Yamamoto, J. K.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Yang, C.

G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
[CrossRef]

G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

Yao, J.

Yi, S. S.

I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
[CrossRef]

Zhang, G.

G. Zhang and Y. Tomita, “Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[CrossRef]

G. Zhang and Y. Tomita, “Nondestructive two-color holography in LiNbO3:Mg by use of ultraviolet-induced absorption,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, C. G. Righini and A. Consortini, eds., Proc. SPIE 4829, 349–350 (2003).
[CrossRef]

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[CrossRef]

S. Sunarno, Y. Tomita, and G. Zhang, “Light-induced absorption changes in In-doped congruent LiNbO3,” Appl. Phys. Lett. 81, 4505–4507 (2002).
[CrossRef]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In, Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[CrossRef]

G. Zhang, S. Sunarno, M. Hoshi, Y. Tomita, C. Yang, and W. Xu, “Characterization of two-color holography performance in reduced LiNbO3:In,” Appl. Opt. 40, 5248–5252 (2001).
[CrossRef]

G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

J. Xu, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, F. Song, Y. Kong, X. Chen, H. Qiao, J. Yao, and Z. Lijuan, “Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals,” Opt. Lett. 25, 129–131 (2000).
[CrossRef]

Zhang, X.

Zhong, G.

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am. 70, 631 (1980).

Appl. Opt. (2)

Appl. Phys. (1)

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect in LiNbO3,” Appl. Phys. 15, 153–156 (1978).
[CrossRef]

Appl. Phys. A (2)

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

R. Jungen, G. Angelow, F. Laeri, and C. B. Grabmaier, “Efficient ultraviolet photorefraction in LiNbO3,” Appl. Phys. A 55, 101–103 (1992).
[CrossRef]

Appl. Phys. B (2)

F. Laeri, R. Jungen, G. Angelow, U. Vietze, T. Engel, M. Würtz, and D. Hilgenberg, “Photorefraction in the ultraviolet: materials and effects,” Appl. Phys. B 61, 351–360 (1995).
[CrossRef]

M. Wöhlecke, G. Corradi, and K. Betzler, “Optical method to characterise the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

Appl. Phys. Lett. (6)

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction–LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

G. Zhang, Y. Tomita, W. Xu, and C. Yang, “Nonvolatile two-color holography in indium-doped lithium niobate,” Appl. Phys. Lett. 77, 3508–3510 (2000).
[CrossRef]

S. Sunarno, Y. Tomita, and G. Zhang, “Light-induced absorption changes in In-doped congruent LiNbO3,” Appl. Phys. Lett. 81, 4505–4507 (2002).
[CrossRef]

G. Zhang, Y. Tomita, X. Zhang, and J. Xu, “Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3:In, Fe,” Appl. Phys. Lett. 81, 1393–1395 (2002).
[CrossRef]

Ferroelectr. Lett. Sect. (1)

T. R. Volk and N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. Sect. 14, 37–43 (1992).
[CrossRef]

Ferroelectrics (1)

T. Volk, M. Wöhlecke, N. Rubinina, A. Reichert, and N. Razumovski, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate,” Ferroelectrics 183, 291–300 (1996).
[CrossRef]

J. Appl. Phys. (2)

G. Zhang and Y. Tomita, “Ultraviolet-light-induced near-infrared photorefractivity and two-color holography in highly Mg-doped LiNbO3,” J. Appl. Phys. 93, 9456–9459 (2003).
[CrossRef]

G. Zhang and Y. Tomita, “Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg,” J. Appl. Phys. 91, 4177–4180 (2002).
[CrossRef]

J. Cryst. Growth (2)

B. C. Grabmaier, W. Wersing, and W. Koestler, “Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure,” J. Cryst. Growth 110, 339–347 (1991).
[CrossRef]

I. W. Kim, S. S. Yi, V. F. Pichugin, V. Y. Yakovlev, and M. S. Dmitriev, “Luminescence and optical absorption spectra of heavily Mg-doped LiNbO3 single crystals irradiated by pulsed electron beam,” J. Cryst. Growth 253, 319–325 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO,” J. Opt. Soc. Am. 70, 631 (1980).

J. Opt. Soc. Am. B (3)

J. Phys. C (1)

L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

J. Phys. Chem. Solids (1)

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

J. Solid State Chem. (1)

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different composition,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Tomita, M. Hoshi, and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys. 40, L1035–L1037 (2001).
[CrossRef]

Opt. Commun. (1)

J. Rams, A. Alcázar-de-Velasco, A. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibitation and thresholding effects in lithium noibate above room temperature,” Opt. Commun. 178, 211–216 (2000).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

G. Zhang and Y. Tomita, “Nondestructive two-color holography in LiNbO3:Mg by use of ultraviolet-induced absorption,” in 19th Congress of the International Commission for Optics: Optics for the Quality of Life, C. G. Righini and A. Consortini, eds., Proc. SPIE 4829, 349–350 (2003).
[CrossRef]

Solid State Commun. (1)

R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectral dependence of linear absorption coefficients α for Mg-doped near-stoichiometric LiNbO3 (solid curve) and undoped and reduced congruent LiNbO3 (dotted curve). Also plotted in the inset are infrared absorption spectra for these crystals. Measurements were made with unpolarized light.

Fig. 2
Fig. 2

(a) Spectral ULA coefficient changes Δα for Mg-doped (open circles) and undoped (filled circles) near-stoichiometric LiNbO3 under illumination of the incoherent UV light. (b) Dark-decay dynamics of Δα at 780 nm. The probe-light intensity was 0.16 mW/cm2. The solid curve is the least-squares fit of Eq. (1) to the data. In (a) and (b) the intensity of the UV light with a wavelength range of 310–420 nm was 0.8 W/cm2 and the crystal temperature was 297 K.

Fig. 3
Fig. 3

(a) Full cycle of ULTH with a grating spacing of 1.1 µm. Two extraordinarily polarized writing beams of 2.5 W/cm2 each at 780 nm and a spectrally filtered UV gating beam of 159 mW/cm2 at 365 nm were used in the experiment. Both writing and gating beams were simultaneously turned on during recording period 1, while only one of the writing beams was turned on during optical fixing period 2. During erasing period 3 the UV gating beam and one of the writing beams were turned on. (b) Buildup portion of (a).

Fig. 4
Fig. 4

Dependence of S on Ig. The grating spacing was set to be 1.1 µm. The crystal temperature was 297 K.

Fig. 5
Fig. 5

Temporal change in η in the dark after recording (30 s). The solid curve corresponds to the least-squares fit of Eq. (2) to the data. In this measurement two extraordinarily polarized writing beams of 0.26 W/cm2 each at 780 nm and the UV gating beam of 159 mW/cm2 at 365 nm were used. The crystal temperature was fixed at 297 K.

Fig. 6
Fig. 6

Measured temporal traces of η during recording and optical fixing at (a) short and (b) long exposures and calculated temporal changes in Δnd, Δns, and η during recording and optical fixing at (c) short (Tτd) and (d) long (Tτd) writing exposures. In (a) and (b) two extraordinarily polarized writing beams of 0.26 W/cm2 each at 780 nm and the UV gating beam of 159 mW/cm2 at 365 nm were used. The crystal temperature was fixed at 297 K. In the calculation, Δnd/Δns=0.5 and ϕ=164° were used.

Fig. 7
Fig. 7

Recording time dependence of ηpeak1/2. The solid curve corresponds to the least-squares fit of the function defined in the text to the data. The experimental condition was the same as that for Fig. 6.

Fig. 8
Fig. 8

Temporal trace of the square root of η in the dark long after optical fixing, where t=0 corresponds to the time when η takes ηpeak. The crystal temperature was fixed at 297 K.

Fig. 9
Fig. 9

Proposed energy-band diagram of photorefractive centers responsible for the UV-light-gating two-color photorefractive effect in near-stoichiometric LiNbO3 doped with Mg above threshold. Estimated thermal activation energies for O- and X1 are shown in parentheses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δα(t)=Δα0[1+2γ(Δα0)2t]1/2,
η=A|Δnd exp(iϕ)+Δns exp(-t/τs0)|2,
η=A|Δnd exp(iϕ)[1-exp(-t/τd)]+Δns[1-exp(-t/τs)]|2,
η=A|Δnd exp(iϕ)[1-exp(-T/τd)]+Δns[1-exp(-T/τs)]exp[-(t-T)/τs1]|2,
η(t)=C|Δnd1 exp(-t/τd1)+Δnd2 exp(-t/τd2)+Δnd3|,

Metrics