Abstract

We report the infrared-to-visible upconversion luminescence of Er3+-doped lead–niobium–germanate glasses (GeO2PbONb2O5) with different Er2O3 concentrations (0.5, 1, 2, and 3 wt.%) under continuous-wave and pulsed-laser excitation in the near-infrared region inside the  4I9/2 level. Intense green emission due to the (2H11/2,4S3/2) 4I15/2 transitions was observed at room temperature together with a weak red emission corresponding to the  4F9/2 4I15/2 transition. These upconversion emissions are attributed to a two-photon process. The time evolution of the green emission from the  4S3/2 level indicates that energy-transfer upconversion and excited-state absorption are responsible for the upconversion luminescence. The increase of the weak red emission with increasing Er2O3 concentration, together with its temporal behavior under infrared excitation, suggests that for Er2O3 concentrations higher than 1 wt.%, the upconverted red emission is the result of multiphonon relaxation from the  4S3/2 level and energy-transfer processes.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er:Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
    [CrossRef]
  2. T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
    [CrossRef]
  3. J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
    [CrossRef]
  4. A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
    [CrossRef]
  5. S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
    [CrossRef]
  6. B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64, 1327–1329 (1994).
    [CrossRef]
  7. S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
    [CrossRef]
  8. J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).
  9. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
    [CrossRef]
  10. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
    [CrossRef]
  11. J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).
  12. D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
    [CrossRef] [PubMed]
  13. Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
    [CrossRef]
  14. R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
    [CrossRef]
  15. R. Balda, M. Sanz, J. Fernández, and J. M. Fernández Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17, 1671–1677 (2000).
    [CrossRef]
  16. R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
    [CrossRef]
  17. R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
    [CrossRef]
  18. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  19. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  20. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
    [CrossRef]
  21. Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
    [CrossRef]
  22. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
    [CrossRef]
  23. M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
    [CrossRef]
  24. F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
    [CrossRef]
  25. C. Wright, “Up-conversion and excited state energy transfer in rare earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed. (Springer-Verlag, Heidelberg, Germany, 1976), pp. 239–295.
  26. M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
    [CrossRef]
  27. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
    [CrossRef]
  28. X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
    [CrossRef]
  29. D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
    [CrossRef]
  30. In fact, n5 (t) contains a term of the form exp [n30 γIII τ3 exp (−t/τ3)], but this gives an exponentially small contribution to the temporal behavior of n4 (t) that has been neglected. The same happens with process II analyzed below.
  31. It is possible to find analytical solutions to all orders in γ in terms of the incomplete gamma function (also for the model that will be analyzed next). However, the solutions are cumbersome and not as easy to interpret as the approximations presented here.

2000 (4)

R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
[CrossRef]

X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, M. Sanz, J. Fernández, and J. M. Fernández Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17, 1671–1677 (2000).
[CrossRef]

1999 (2)

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

1998 (1)

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

1996 (1)

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

1995 (4)

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er:Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

1994 (3)

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64, 1327–1329 (1994).
[CrossRef]

1993 (3)

S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

1991 (1)

T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

1990 (1)

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

1988 (1)

A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

1986 (1)

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

1973 (1)

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ajò, D.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Arriandiaga, M. A.

R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
[CrossRef]

Auzel, F. E.

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Balda, R.

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, M. Sanz, J. Fernández, and J. M. Fernández Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17, 1671–1677 (2000).
[CrossRef]

R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
[CrossRef]

R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

Beguin, A.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Bell, M. J. V.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

Bettinelli, M.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Brierley, M. C.

T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Brinck, D. J. B.

Brocklesby, W. S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Brooks, C. L.

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er:Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

Brown, R. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Camy, P.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Canale, J. E.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Chang, D. B.

A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

Chen, X.

X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
[CrossRef]

Collins, W. E.

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Condrate , Sr., R. A.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

Cornilsen, B. C.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

De Pablos, A.

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

Deol, R. S.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Dexpert-Ghys, J.

S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

Di Bartolo, B.

X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
[CrossRef]

Drexhage, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Dyer, K.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Fdez-Navarro, J. M.

R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

Fernández, J.

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
[CrossRef]

R. Balda, M. Sanz, J. Fernández, and J. M. Fernández Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17, 1671–1677 (2000).
[CrossRef]

R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

Fernández Navarro, J. M.

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Frei, G.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

Fritzer, H. P.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Gatterer, K.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Güdel, H. U.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

Hanna, D. C.

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

Hempstead, M.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Hernandes, A. C.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

Hirao, K.

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Hollis, D. B.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kakarantzas, G.

King, V.

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Lebullenger, R.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

Lerminiaux, C.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Lincoln, J. R.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Liu, H.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Long, B. H.

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Loper, A.

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Luu, Q.

X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
[CrossRef]

Mackechnie, C. J.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Mastelaro, V. R.

S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

McDougall, J.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Millar, C. A.

T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Morgan, S. H.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Mugnier, J.

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

Nassau, K.

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

Nguyen, T.

X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
[CrossRef]

Nouth, S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Nunes, L. A. O.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Pan, Z.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

Payne, D. N.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Payne, M. J. P.

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Pearson, A.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Piriou, B.

S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

Pollack, A.

A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Reddy, B. R.

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64, 1327–1329 (1994).
[CrossRef]

Ribeiro, S. L. J.

S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

Roman, J. E.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Sáez de Ocáriz, I.

R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
[CrossRef]

Sanz, M.

R. Balda, M. Sanz, J. Fernández, and J. M. Fernández Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17, 1671–1677 (2000).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

Shepherd, D. P.

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Soga, N.

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Speghini, A.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Szebesta, D.

T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Tanabe, S.

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

Townsend, P. D.

Tropper, A. C.

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Ueda, A.

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

Venkateswarlu, P.

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64, 1327–1329 (1994).
[CrossRef]

Vossler, G. L.

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er:Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

Wachtler, M.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Wang, J.

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994).
[CrossRef] [PubMed]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

Whitley, T. H.

T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Wilkinson, J. S.

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

Winik, K. A.

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er:Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

Wyatt, R.

T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

Zonetti, L. F. C.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64, 1327–1329 (1994).
[CrossRef]

Electron. Lett. (3)

G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er:Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995).
[CrossRef]

T. H. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
[CrossRef]

J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead-germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

J. Appl. Phys. (5)

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993).
[CrossRef]

Z. Pan, S. H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995).
[CrossRef]

A. Pollack and D. B. Chang, “Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,” J. Appl. Phys. 64, 2885–2893 (1988).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications,” J. Appl. Phys. 85, 2502–2507 (1999).
[CrossRef]

Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996).
[CrossRef]

J. Can. Ceram. Soc. (1)

J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

J. Lumin. (1)

X. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo, “Concentration dependence of visible-upconversion luminescence in the laser crystal Gd3Ga5O12 doped erbium,” J. Lumin. 85, 295–299 (2000).
[CrossRef]

J. Non-Cryst. Solids (3)

S. L. J. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993).
[CrossRef]

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (2)

R. Balda, J. Fernández, A. De Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

R. Balda, I. Sáez de Ocáriz, J. Fernández, J. M. Fdez-Navarro, and M. A. Arriandiaga, “Spectroscopy and orange-blue frequency upconversion in Pr3+ doped GeO2–PbO–Nb2O5 glass,” J. Phys. Condens. Matter 12, 10623–10632 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Glasses (1)

J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967).
[CrossRef]

Phys. Rev. B (3)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000).
[CrossRef]

Proc. IEEE (1)

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Other (3)

C. Wright, “Up-conversion and excited state energy transfer in rare earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed. (Springer-Verlag, Heidelberg, Germany, 1976), pp. 239–295.

In fact, n5 (t) contains a term of the form exp [n30 γIII τ3 exp (−t/τ3)], but this gives an exponentially small contribution to the temporal behavior of n4 (t) that has been neglected. The same happens with process II analyzed below.

It is possible to find analytical solutions to all orders in γ in terms of the incomplete gamma function (also for the model that will be analyzed next). However, the solutions are cumbersome and not as easy to interpret as the approximations presented here.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Room-temperature absorption spectrum for the sample doped with 2% of Er2O3.

Fig. 2
Fig. 2

Upconversion emission spectrum obtained under excitation at 803 nm for the sample doped with 0.5% of Er2O3.

Fig. 3
Fig. 3

Logarithmic plot of the integrated intensities of the upconverted emission from  2H11/2 (529 nm),  4S3/2 (548 nm), and  4F9/2 (653 nm) levels obtained under excitation at 803 nm.

Fig. 4
Fig. 4

Experimental emission decays curves of the (a) green and (b) red emissions obtained under excitation at 484 nm and 803 nm for the samples doped with 0.5% and 3% concentrations, respectively. Data correspond to room temperature.

Fig. 5
Fig. 5

Energy-level diagram of Er3+ ion in GPN glass and possible upconversion mechanisms.

Fig. 6
Fig. 6

Temporal behavior of the upconverted  4S3/2 luminescence for the samples doped with (a) 0.5% and (b) 2% concentration at room temperature after pulsed infrared excitation at 803 nm (open circles) and fitted to Eq. (6a) (solid curves). The insets show the same curves in semilogarithmic representation for the sake of clarity.

Fig. 7
Fig. 7

Upconversion emission spectra of Er3+-doped GPN glass with different Er2O3 concentrations: (a) 0.5%, (b) 1%, (c) 2%, and (d) 3%, obtained under excitation at 803 nm. The intensities of emission are normalized to the 548-nm band.

Fig. 8
Fig. 8

Temporal behavior of the upconverted  4F9/2 luminescence for the samples doped with (a) 2% and (b) 3% concentration at room temperature after pulsed infrared excitation at 803 nm (open circles) and fitted to Eq. (10) (solid curves). The insets show the same curves in semilogarithmic representation for the sake of clarity.

Tables (3)

Tables Icon

Table 1 Predicted Radiative Transition Rates, Lifetimes, and Branching Ratios of Er3+ in GPN Glass

Tables Icon

Table 2 Lifetimes of the  4S3/2 Level Obtained under One-Photon Excitation at 484 nm and Infrared Excitation at 803 nm at Room Temperature

Tables Icon

Table 3 Lifetimes of the  4F9/2 Level Obtained under One-Photon Excitation at 484 nm and Infrared Excitation at 803 nm at Room Temperaturea

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

A[(S, L)J; (S, L)J]
=64π4e23hλ3(2J+1)n(n2+2)29Sed+n3Smd,
τR=S,L,JA[(S, L)J; (S, L)J]-1.
β[(S, L)J; (S, L)J]
=A[(S, L)J; (S, L)J]S,L,JA[(S, L)J; (S, L)J].
n˙1(t)=n2τ2+n3τ3+n4τ4+n5τ5+Wtn32+γIIn2n3,
n˙2(t)=-n2τ2+γIn32-γIIn2n3,
n˙3(t)=-n3τ3-2Wtn32-2γIn32-γIIn2n3-γIIIn3n5,
n˙4(t)=-n4τ4+W54n5+γIn32+γIIn2n3+2γIIIn3n5,
n˙5(t)=-n5τ5-W54n5+Wtn32+W65n6-γIIIn3n5,
n˙6(t)=-W65n6.
n3τ32Wtn32+2γIn32+γIIn2n3+γIIIn3n5,
n5(t)=-n60exp(-W65t)+n302exp(-2t/τ3)+(n50+n60-n302)exp(-t/τ5),
n4(t)=CI exp(-t/τ4)+n60W54 τ4W65τ4-1 exp(-W65t)+(n50+n60-n302)W54 τ4τ5τ5-τ4 exp(-t/τ5)+(n302W54+n302γI)τ3τ4τ3-2τ4 exp(-2t/τ4),
CI=n40-n60 τ4W54W65τ4-1-n302W54 τ3τ4τ3-2τ4-(n50+n60-n302)W54 τ4τ5τ5-τ4-n302γI τ3τ4τ3-2τ4
n30=n30Wt τ3τ5τ3-2τ51/2,
n60=n60 W65τ5W65τ5-1,1τ5=1τ5+W54
n5(t)exp(-2t/τ3),
n4(t)exp(-2t/τ3).
n4(t)=CIII exp(-t/τ4)+W54n60 τ4W65τ4-1 exp(-W65t)+n302 τ3τ4τ3-2τ4 exp(-2t/τ3)+(n50+n60-n302)τ4τ5τ5-τ4 exp(-t/τ5)+2γIIIn30n50τ3τ5τ4τ3τ5-τ5τ4-τ3τ4×exp-1τ3+1τ5t,
CIII=n40-W54n60 τ4W65τ4-1+n302 τ3τ4τ3-2τ4+(n50+n60-n302)τ4τ5τ5-τ4-2γIIIn30n50 τ3τ5τ4τ3τ5-τ5τ4-τ3τ4.
n4(t)exp(-2t/τ3),
n4(t)=CII exp(-t/τ4)+W54n60 τ4W65τ4-1 exp(-W65t)+n302 τ3τ4τ3-2τ4 exp(-2t/τ3)+(n50+n60-n302)τ4τ5τ5-τ4 exp(-t/τ5)+n30n20γII τ2τ3τ4τ2τ3-τ2τ4-τ3τ4×exp-1τ3+1τ2t
CII=n40-W54n60 τ4W65τ4-1+n302 τ3τ4τ3-2τ4+(n50+n60-n302)τ4τ5τ5-τ4-γIIn30n20 τ2τ3τ4τ2τ3-τ2τ4-τ3τ4.
n4(t)exp-1τ3+1τ2texp(-t/τ3),

Metrics