Abstract

Optical absorption and emission spectra and fluorescence lifetimes were measured for Nd3+ in a series of five oxide glasses. Spectroscopic parameters such as the stimulated-emission cross section, the effective bandwidth of the  4F3/2 4I11/2 transition, and the radiative lifetime of the  4F3/2 level were obtained, and their dependence on the composition of the glass is described. In addition, the relative gain properties for the  4F3/24I11/2 transition in various glasses are evaluated by the classic gain equation model.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Miniscalco, “Erbium doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
    [CrossRef]
  2. C. A. Brackett, “Foreword: Is there an emerging consensus on WDM networking?” J. Lightwave Technol. 14, 936–941 (1996).
  3. K. P. Hansen, M. D. Nielsen, and A. Bjarldev, “Design optimization of erbium doped fibers for use in L-band amplifiers,” Electron. Lett. 36, 1685–1686 (2000).
    [CrossRef]
  4. J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
    [CrossRef]
  5. M. Yamada, H. Ono, and Y. Ohishi, “Low noise, broadband Er3+ doped silica fiber amplifier,” Electron. Lett. 34, 1491–1491 (1998).
    [CrossRef]
  6. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
    [CrossRef]
  7. S. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite—a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
    [CrossRef]
  8. J. H. Yang, S. X. Dai, N. L. Dai, S. Q. Xu, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses,” J. Opt. Soc. Am. B 20, 810–815 (2003).
    [CrossRef]
  9. S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
    [CrossRef]
  10. S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
    [CrossRef]
  11. X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
    [CrossRef]
  12. A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
    [CrossRef]
  13. Y. B. Lu and P. L. Chu, “Gain flattening by using dual-core fiber in erbium doped fiber amplifier,” IEEE Photonics Technol. Lett. 12, 1616–1617 (2000).
    [CrossRef]
  14. R. G. Smart, J. L. Zyskind, and D. J. DiGiovanni, “Experimental comparison of 980 nm and 1480 nm pumped saturated in-line erbium doped fiber amplifiers suitable for long-haul soliton transmission systems,” IEEE Photonics Technol. Lett. 5, 770–773 (1993).
    [CrossRef]
  15. M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
    [CrossRef]
  16. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  17. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  18. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
    [CrossRef]
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
    [CrossRef]
  20. T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
    [CrossRef]
  21. M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42, 4996–5005 (1971).
    [CrossRef]
  22. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
    [CrossRef]
  23. H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
    [CrossRef]
  24. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
    [CrossRef]
  25. M. J. Weber, T. E. Varitimos, and B. H. Matsinger, “Optical intensities of rare earth ions in yttrium orthoaluminate,” Phys. Rev. B 8, 47–53 (1973).
    [CrossRef]
  26. D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
    [CrossRef]
  27. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
    [CrossRef]
  28. W. F. Krupke, “Induced emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
    [CrossRef]
  29. J. H. Campell and T. I. Suratwala, “Nd-doped phosphate glasses for high energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
    [CrossRef]
  30. R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983).
    [CrossRef]
  31. M. E. Vance, “Saturation and excited state absorption in neodymium laser glass,” IEEE J. Quantum Electron. QE-6, 249–253 (1970).
    [CrossRef]
  32. D. J. DiGiovanni and B. Palsdottir, “Performance of high-concentration erbium doped fiber amplifiers,” IEEE Photonics Technol. Lett. 11, 973–975 (1999).
    [CrossRef]
  33. R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
    [CrossRef]

2003 (2)

J. H. Yang, S. X. Dai, N. L. Dai, S. Q. Xu, L. Wen, L. L. Hu, and Z. H. Jiang, “Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses,” J. Opt. Soc. Am. B 20, 810–815 (2003).
[CrossRef]

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
[CrossRef]

2002 (1)

S. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite—a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[CrossRef]

2001 (2)

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[CrossRef]

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

2000 (7)

J. H. Campell and T. I. Suratwala, “Nd-doped phosphate glasses for high energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

Y. B. Lu and P. L. Chu, “Gain flattening by using dual-core fiber in erbium doped fiber amplifier,” IEEE Photonics Technol. Lett. 12, 1616–1617 (2000).
[CrossRef]

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

K. P. Hansen, M. D. Nielsen, and A. Bjarldev, “Design optimization of erbium doped fibers for use in L-band amplifiers,” Electron. Lett. 36, 1685–1686 (2000).
[CrossRef]

1999 (1)

D. J. DiGiovanni and B. Palsdottir, “Performance of high-concentration erbium doped fiber amplifiers,” IEEE Photonics Technol. Lett. 11, 973–975 (1999).
[CrossRef]

1998 (3)

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

M. Yamada, H. Ono, and Y. Ohishi, “Low noise, broadband Er3+ doped silica fiber amplifier,” Electron. Lett. 34, 1491–1491 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[CrossRef]

1996 (1)

C. A. Brackett, “Foreword: Is there an emerging consensus on WDM networking?” J. Lightwave Technol. 14, 936–941 (1996).

1994 (1)

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

1993 (1)

R. G. Smart, J. L. Zyskind, and D. J. DiGiovanni, “Experimental comparison of 980 nm and 1480 nm pumped saturated in-line erbium doped fiber amplifiers suitable for long-haul soliton transmission systems,” IEEE Photonics Technol. Lett. 5, 770–773 (1993).
[CrossRef]

1991 (1)

W. J. Miniscalco, “Erbium doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

1990 (1)

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[CrossRef]

1986 (1)

1983 (1)

R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983).
[CrossRef]

1981 (1)

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

1976 (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

1974 (1)

W. F. Krupke, “Induced emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

1973 (1)

M. J. Weber, T. E. Varitimos, and B. H. Matsinger, “Optical intensities of rare earth ions in yttrium orthoaluminate,” Phys. Rev. B 8, 47–53 (1973).
[CrossRef]

1971 (1)

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

1970 (1)

M. E. Vance, “Saturation and excited state absorption in neodymium laser glass,” IEEE J. Quantum Electron. QE-6, 249–253 (1970).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

1965 (1)

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ahammed, Y. N.

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

Ainslie, B. J.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[CrossRef]

Ajò, D.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Armitage, J. R.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[CrossRef]

Bettinelli, M.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Bjarldev, A.

K. P. Hansen, M. D. Nielsen, and A. Bjarldev, “Design optimization of erbium doped fibers for use in L-band amplifiers,” Electron. Lett. 36, 1685–1686 (2000).
[CrossRef]

Blackburn, D. H.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Brackett, C. A.

C. A. Brackett, “Foreword: Is there an emerging consensus on WDM networking?” J. Lightwave Technol. 14, 936–941 (1996).

Brown, R. N.

R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983).
[CrossRef]

Buddhudu, S.

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

Caird, J. A.

Campell, J. H.

J. H. Campell and T. I. Suratwala, “Nd-doped phosphate glasses for high energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

Chiasera, A.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Chu, P. L.

Y. B. Lu and P. L. Chu, “Gain flattening by using dual-core fiber in erbium doped fiber amplifier,” IEEE Photonics Technol. Lett. 12, 1616–1617 (2000).
[CrossRef]

Craig-Ryan, S. P.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[CrossRef]

Dai, N. L.

Dai, S. X.

DiGiovanni, D. J.

D. J. DiGiovanni and B. Palsdottir, “Performance of high-concentration erbium doped fiber amplifiers,” IEEE Photonics Technol. Lett. 11, 973–975 (1999).
[CrossRef]

R. G. Smart, J. L. Zyskind, and D. J. DiGiovanni, “Experimental comparison of 980 nm and 1480 nm pumped saturated in-line erbium doped fiber amplifiers suitable for long-haul soliton transmission systems,” IEEE Photonics Technol. Lett. 5, 770–773 (1993).
[CrossRef]

Drexhage, M. G.

R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983).
[CrossRef]

Duverger, C.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Feng, X.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[CrossRef]

Ferrari, M.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

Fritzer, H. P.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Galinetto, P.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Gatterer, K.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Greenberg, E.

R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983).
[CrossRef]

Gruber, J. B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
[CrossRef]

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Hansen, K. P.

K. P. Hansen, M. D. Nielsen, and A. Bjarldev, “Design optimization of erbium doped fibers for use in L-band amplifiers,” Electron. Lett. 36, 1685–1686 (2000).
[CrossRef]

Hoshino, K.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

Hu, L. L.

Hussain, N. S.

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

Hutchinson, J. A.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
[CrossRef]

Hwang, B.-C.

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

Ito, S.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Izumitani, T.

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

Jha, A.

S. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite—a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[CrossRef]

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Jiang, S.

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

Jiang, Z. H.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kobayashi, K.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

Krupke, W. F.

Lu, Y. B.

Y. B. Lu and P. L. Chu, “Gain flattening by using dual-core fiber in erbium doped fiber amplifier,” IEEE Photonics Technol. Lett. 12, 1616–1617 (2000).
[CrossRef]

Lucas, J.

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

Luo, T.

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

Marion, J. E.

Massicott, J. F.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[CrossRef]

Matsinger, B. H.

M. J. Weber, T. E. Varitimos, and B. H. Matsinger, “Optical intensities of rare earth ions in yttrium orthoaluminate,” Phys. Rev. B 8, 47–53 (1973).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Montagna, M.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Mori, A.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[CrossRef]

Morinaga, K.

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

Moser, E.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Myers, J. D.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

Naftaly, M.

S. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite—a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[CrossRef]

Nielsen, M. D.

K. P. Hansen, M. D. Nielsen, and A. Bjarldev, “Design optimization of erbium doped fibers for use in L-band amplifiers,” Electron. Lett. 36, 1685–1686 (2000).
[CrossRef]

Nishida, Y.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohishi, Y.

Oikawa, K.

Ono, H.

Palsdottir, B.

D. J. DiGiovanni and B. Palsdottir, “Performance of high-concentration erbium doped fiber amplifiers,” IEEE Photonics Technol. Lett. 11, 973–975 (1999).
[CrossRef]

Parandamaiah, M.

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

Pelli, S.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Peyghambarian, N.

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

Purandar, K.

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

Rao, T. V. R.

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

Reddy, R. R.

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

Reisfeld, R.

R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983).
[CrossRef]

Righini, G. C.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Rolli, R.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Ronchin, S.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Sakamoto, T.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

Sardar, D. K.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
[CrossRef]

Seneschal, K.

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

Shen, S.

S. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite—a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[CrossRef]

Shikano, K.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

Shimizu, M.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

Shinn, M. D.

Smart, R. G.

R. G. Smart, J. L. Zyskind, and D. J. DiGiovanni, “Experimental comparison of 980 nm and 1480 nm pumped saturated in-line erbium doped fiber amplifiers suitable for long-haul soliton transmission systems,” IEEE Photonics Technol. Lett. 5, 770–773 (1993).
[CrossRef]

Smekatala, F.

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

Speghini, A.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Stokowski, S. E.

Sugimoto, N.

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Suratwala, T. I.

J. H. Campell and T. I. Suratwala, “Nd-doped phosphate glasses for high energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

Takebe, H.

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[CrossRef]

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

Tikhomirov, V. K.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Tikhomirova, S. A.

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Trussell, C. W.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
[CrossRef]

Vance, M. E.

M. E. Vance, “Saturation and excited state absorption in neodymium laser glass,” IEEE J. Quantum Electron. QE-6, 249–253 (1970).
[CrossRef]

Varitimos, T. E.

M. J. Weber, T. E. Varitimos, and B. H. Matsinger, “Optical intensities of rare earth ions in yttrium orthoaluminate,” Phys. Rev. B 8, 47–53 (1973).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

Wachtler, M.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Weber, M. J.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

M. J. Weber, T. E. Varitimos, and B. H. Matsinger, “Optical intensities of rare earth ions in yttrium orthoaluminate,” Phys. Rev. B 8, 47–53 (1973).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

Wen, L.

Wyatt, R.

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[CrossRef]

Wybourne, B. G.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

Xu, S. Q.

Yamada, M.

Yang, J. H.

Zandi, B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
[CrossRef]

Zyskind, J. L.

R. G. Smart, J. L. Zyskind, and D. J. DiGiovanni, “Experimental comparison of 980 nm and 1480 nm pumped saturated in-line erbium doped fiber amplifiers suitable for long-haul soliton transmission systems,” IEEE Photonics Technol. Lett. 5, 770–773 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

R. Reisfeld, E. Greenberg, R. N. Brown, and M. G. Drexhage, “Fluorescence of europium (III) in a flouride glass containing zirconium,” Chem. Phys. Lett. 95, 91–94 (1983).
[CrossRef]

Electron. Lett. (4)

K. P. Hansen, M. D. Nielsen, and A. Bjarldev, “Design optimization of erbium doped fibers for use in L-band amplifiers,” Electron. Lett. 36, 1685–1686 (2000).
[CrossRef]

J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645–1646 (1990).
[CrossRef]

M. Yamada, H. Ono, and Y. Ohishi, “Low noise, broadband Er3+ doped silica fiber amplifier,” Electron. Lett. 34, 1491–1491 (1998).
[CrossRef]

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+ doped tellurite fiber amplifier for WDM signals in the 1581–1616 nm wavelength region,” Electron. Lett. 36, 621–622 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. E. Vance, “Saturation and excited state absorption in neodymium laser glass,” IEEE J. Quantum Electron. QE-6, 249–253 (1970).
[CrossRef]

W. F. Krupke, “Induced emission cross sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10, 450–457 (1974).
[CrossRef]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

D. J. DiGiovanni and B. Palsdottir, “Performance of high-concentration erbium doped fiber amplifiers,” IEEE Photonics Technol. Lett. 11, 973–975 (1999).
[CrossRef]

Y. B. Lu and P. L. Chu, “Gain flattening by using dual-core fiber in erbium doped fiber amplifier,” IEEE Photonics Technol. Lett. 12, 1616–1617 (2000).
[CrossRef]

R. G. Smart, J. L. Zyskind, and D. J. DiGiovanni, “Experimental comparison of 980 nm and 1480 nm pumped saturated in-line erbium doped fiber amplifiers suitable for long-haul soliton transmission systems,” IEEE Photonics Technol. Lett. 5, 770–773 (1993).
[CrossRef]

Infrared Phys. Technol. (1)

T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, M. Parandamaiah, N. S. Hussain, S. Buddhudu, and K. Purandar, “Luminescence properties of Nd3+:TeO2–B2O3–P2O5–Li2O glass,” Infrared Phys. Technol. 41, 247–258 (2000).
[CrossRef]

J. Am. Ceram. Soc. (2)

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

X. Feng, S. Tanabe, and T. Hanada, “Spectroscopic properties and thermal stability of Er3+-doped germanotellurite glasses for broadband fiber amplifiers,” J. Am. Ceram. Soc. 84, 165–171 (2001).
[CrossRef]

J. Appl. Phys. (3)

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93, 2041–2046 (2003).
[CrossRef]

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
[CrossRef]

J. Chem. Phys. (3)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
[CrossRef]

J. Lightwave Technol. (2)

W. J. Miniscalco, “Erbium doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

C. A. Brackett, “Foreword: Is there an emerging consensus on WDM networking?” J. Lightwave Technol. 14, 936–941 (1996).

J. Lumin. (1)

S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broadband 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87–89, 670–672 (2000).
[CrossRef]

J. Non-Cryst. Solids (3)

S. Jiang, T. Luo, B.-C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263&264, 364–368 (2000).
[CrossRef]

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[CrossRef]

J. H. Campell and T. I. Suratwala, “Nd-doped phosphate glasses for high energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264, 318–341 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite—a host glass for broadband EDFA,” Opt. Commun. 205, 101–105 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. B (1)

M. J. Weber, T. E. Varitimos, and B. H. Matsinger, “Optical intensities of rare earth ions in yttrium orthoaluminate,” Phys. Rev. B 8, 47–53 (1973).
[CrossRef]

Proc. SPIE (1)

R. Rolli, A. Chiasera, M. Montagna, E. Moser, S. Ronchin, S. Pelli, G. C. Righini, A. Jha, V. K. Tikhomirov, S. A. Tikhomirova, C. Duverger, P. Galinetto, and M. Ferrari, “Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties,” in Rare-Earth-Doped Materials and Devices V, S. Jiang, ed., Proc. SPIE 4282, 109–122 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption spectra of five Nd3+-doped oxide glasses at room temperature.

Fig. 2
Fig. 2

 4F3/2 4I11/2 fluorescence spectra of five Nd3+-doped oxide glasses at room temperature.

Fig. 3
Fig. 3

Relative gain properties of the  4F3/2 4I11/2 transitions of five Nd3+-doped oxide glasses.

Tables (4)

Tables Icon

Table 1 nd, ρ, and N0 Values for Five Nd3+-Doped Oxide Glasses

Tables Icon

Table 2 Judd–Ofelt Parameters and Line Strengths of Five Nd3+-Doped Oxide Glasses

Tables Icon

Table 3 Spectroscopic Properties of Five Nd3+-Doped Oxide Glasses

Tables Icon

Table 4 Δλeff, λp, and σp Values of the  4F3/2 4I11/2 Transition of Five Nd3+-Doped Oxide Glasses

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Sed=t=2,4,6Ωt|4fN(SL)JU(λ)4fN(SL)J|,
A(J;J)=64π4e23h(2J+1)λp3n(n2+2)29S(J;J),
β(J;J)=A(J;J) A(J;J),
τr=1A(J;J).
Δλeff= I(λ)dλ/Imax
σP=λp48πcn2ΔλeffA[(4F3/2; 4IJ)].
g=σpΔN,
ΔN=N0Pτ,
g=λp48πcAn2ΔλeffN0Pτ.
g=KAn2λeffτ.

Metrics