Abstract

A new method for determination of the refractive index of any transparent solvent or glass was developed and tested for use at temperatures of 133–293 K in the ultraviolet and visible spectral ranges. The wavelength and temperature dependencies of the refractive indices of several solvents and of fused silica are reported. The data obtained for tetrachloromethane and fused silica are compared with those available in the literature. The advantages and limitations of the method are discussed, based on the accuracy of the data presented. Knowing the values of refractive indices of organic solvents should be useful in luminescence spectroscopy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mavrodineau, J. I. Schultz, and O. Menis, eds., Accuracy in Spectrophotometry and Luminescence Measurements (U.S. Government Printing Office, Washington, D.C., 1973), pp. 238–240.
  2. J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
    [CrossRef]
  3. J. Jasny and J. Sepioł, “Single molecules observed by immersion mirror objective. A novel method of finding the orientation of radiating dipole,” Chem. Phys. Lett. 273, 439–443 (1997).
    [CrossRef]
  4. K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
    [CrossRef]
  5. P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Clim. 221, 301 (2000).
  6. K. Sasaki and H. Misawa, “Laser trapping and scanning micromanipulation of fine particles,” in Microchemistry: Spectroscopy and Chemistry in Small Domains, H. Masuhara, F. C. De Schryver, N. Kitamura, and N. Tamai, eds. (North-Holland, Amsterdam, 1994), pp. 23–34.
  7. K. Sasaki, M. Koshioka, and H. Masuhara, “Three-dimensional space- and time-resolved fluorescence spectroscopy,” Appl. Spectrosc. 45, 1041–1045 (1991).
    [CrossRef]
  8. P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998).
    [CrossRef]
  9. H. Misawa and S. Judokazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
    [CrossRef]
  10. H. M. Przewłocki, “Theory and applications of internal photoemission in the MOS systems at low electric fields,” Solid-State Electron. 45, 1241–1250 (2001).
    [CrossRef]
  11. A. Kudła, “Fotoeletryczne metody wyznaczenia wysokosci barier potencjalu w struturze MOS,” Ph.D. dissertation to (Prace ITE, Warsaw, 1998), pp. 39–49.
  12. S. H. Lee, I. Lee, and J. Yi, “Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications,” Surf. Coat. Technol. 153, 67–71 (2002).
    [CrossRef]
  13. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
    [CrossRef]
  14. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Comp. Neurol. 256&257, 6–16 (1999).
  15. K. Hirao and K. Miura, “Writing waveguides and gratings in silica related materials by femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
    [CrossRef]
  16. B. G. Potter, Jr. and K. Simons-Potter, “Photosensitive point defect in optical glasses: science and applications,” Nucl. Instrum. Methods Phys. Res. B 166–167, 771–781 (2000).
    [CrossRef]
  17. K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
    [CrossRef]
  18. J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003).
    [CrossRef]
  19. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
    [CrossRef]
  20. M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communication,” Opt. Mater. 9, 192–200 (1998).
    [CrossRef]
  21. J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
    [CrossRef]
  22. V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
    [CrossRef]
  23. S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
    [CrossRef]
  24. B. Nickel and A. A. Ruth are preparing a manuscript entitled “Application of Smoluchowski’s generalized theory to the kinetics of triplet–triplet annihilation of anthracene in viscous solution after long-pulse excitation,” to be submitted to Phys. Chem. Chem. Phys.
  25. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970), pp. 372–397.
  26. Ref. 25, pp. 567–594.
  27. P. Avakian and R. E. Merrifield, “Experimental determination of the diffusion length of triplet excitons in anthracene crystals,” Phys. Rev. Lett. 13, 541–543 (1964).
    [CrossRef]
  28. B. Nickel, “A modification of the Avakian–Merrifield method for the determination of the diffusion constants of triplet states,” Ber. Bunsenges. Phys. Chem. 76, 582–584 (1972).
  29. B. Nickel and U. Nickel, “The diffusion constant of pyrene molecules in the triplet state in glycerol from −17 °C to +15 °C,” Ber. Bunsenges. Phys. Chem. 76, 584–589 (1972).
  30. G. E. Meyer and B. Nickel, “Diffusion coefficients of aromatic hydrocarbons in their lowest triplet state: anthracene in hexane, octane, hexadecane, perfluorehexane, and methycyclohexane, pyrene and 9, 10-diphenylantracene in hexane,” Z. Naturforsch. 35A, 503–520 (1980).
  31. B. Nickel, H. E. Wilhelm, and C. P. Jaensch, “Effect of the Förster energy transfers S1+S1→S0+Sn and S1+ T1→S0+Tm on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behavior,” Opt. Spectrosc. 83, 541–556 (1997).
  32. B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998).
    [CrossRef]
  33. C. Synowietz, ed, Organische Verbindungen, Vol. II of Taschenbuch für Physiker und Chemiker (Springer-Verlag, Berlin, 1972), p. 764.
  34. H. G. Boit, ed., Beilsteins Handbuch der Organischen Chemie (Springer-Verlag, Berlin, 1972), Suppl. 4, Vol. I, Sec. I, p. 58.
  35. S. L. Murov, I. Carmichael, and G. L. Hug, eds., Handbook of Photochemistry (Marcel Dekker, New York, 1993), p. 284.
  36. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. II, p. 33.69.
  37. E. M. Voronkova, B. N. Gretshushnikov, G. I. Distler, and I. P. Petrov, Optitsheskiie Materaly dla Infrakrasnoi Techniki (Izdatelstvo Nauka, Moscow, 1965), p. 148.
  38. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford 1970), p. 96.
  39. C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
    [CrossRef]
  40. S. Y. El-Zaiat, “Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine,” Opt. Laser Technol. 35, 55–60 (2003).
    [CrossRef]
  41. R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999).
    [CrossRef]
  42. H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003).
    [CrossRef]
  43. D. Qiu and V. K. Dihr, “Measurement of refractive index of PF-5060,” Exp. Therm. Fluid Sci. 19, 168–171 (1999).
    [CrossRef]
  44. A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998).
    [CrossRef]
  45. W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
    [CrossRef]

2003 (3)

J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003).
[CrossRef]

S. Y. El-Zaiat, “Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine,” Opt. Laser Technol. 35, 55–60 (2003).
[CrossRef]

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003).
[CrossRef]

2002 (2)

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

S. H. Lee, I. Lee, and J. Yi, “Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications,” Surf. Coat. Technol. 153, 67–71 (2002).
[CrossRef]

2001 (1)

H. M. Przewłocki, “Theory and applications of internal photoemission in the MOS systems at low electric fields,” Solid-State Electron. 45, 1241–1250 (2001).
[CrossRef]

2000 (3)

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Clim. 221, 301 (2000).

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

B. G. Potter, Jr. and K. Simons-Potter, “Photosensitive point defect in optical glasses: science and applications,” Nucl. Instrum. Methods Phys. Res. B 166–167, 771–781 (2000).
[CrossRef]

1999 (7)

V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
[CrossRef]

D. Qiu and V. K. Dihr, “Measurement of refractive index of PF-5060,” Exp. Therm. Fluid Sci. 19, 168–171 (1999).
[CrossRef]

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Comp. Neurol. 256&257, 6–16 (1999).

H. Misawa and S. Judokazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

1998 (8)

P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica related materials by femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communication,” Opt. Mater. 9, 192–200 (1998).
[CrossRef]

J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998).
[CrossRef]

A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998).
[CrossRef]

K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
[CrossRef]

1997 (2)

B. Nickel, H. E. Wilhelm, and C. P. Jaensch, “Effect of the Förster energy transfers S1+S1→S0+Sn and S1+ T1→S0+Tm on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behavior,” Opt. Spectrosc. 83, 541–556 (1997).

J. Jasny and J. Sepioł, “Single molecules observed by immersion mirror objective. A novel method of finding the orientation of radiating dipole,” Chem. Phys. Lett. 273, 439–443 (1997).
[CrossRef]

1996 (1)

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

1992 (1)

K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

1991 (1)

1980 (1)

G. E. Meyer and B. Nickel, “Diffusion coefficients of aromatic hydrocarbons in their lowest triplet state: anthracene in hexane, octane, hexadecane, perfluorehexane, and methycyclohexane, pyrene and 9, 10-diphenylantracene in hexane,” Z. Naturforsch. 35A, 503–520 (1980).

1972 (2)

B. Nickel, “A modification of the Avakian–Merrifield method for the determination of the diffusion constants of triplet states,” Ber. Bunsenges. Phys. Chem. 76, 582–584 (1972).

B. Nickel and U. Nickel, “The diffusion constant of pyrene molecules in the triplet state in glycerol from −17 °C to +15 °C,” Ber. Bunsenges. Phys. Chem. 76, 584–589 (1972).

1964 (1)

P. Avakian and R. E. Merrifield, “Experimental determination of the diffusion length of triplet excitons in anthracene crystals,” Phys. Rev. Lett. 13, 541–543 (1964).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Comp. Neurol. 256&257, 6–16 (1999).

Avakian, P.

P. Avakian and R. E. Merrifield, “Experimental determination of the diffusion length of triplet excitons in anthracene crystals,” Phys. Rev. Lett. 13, 541–543 (1964).
[CrossRef]

Barthhélémy, A.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Behery, G. M.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003).
[CrossRef]

Berger, V.

V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
[CrossRef]

Borowicz, P.

P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998).
[CrossRef]

De Angelis, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Deng, Z.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Diemeer, M. B. J.

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communication,” Opt. Mater. 9, 192–200 (1998).
[CrossRef]

Dihr, V. K.

D. Qiu and V. K. Dihr, “Measurement of refractive index of PF-5060,” Exp. Therm. Fluid Sci. 19, 168–171 (1999).
[CrossRef]

El Ghandoor, H.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003).
[CrossRef]

El-Baradie, B.

R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999).
[CrossRef]

El-Mekaweg, F.

R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999).
[CrossRef]

El-Shaer, A.

R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999).
[CrossRef]

El-Zaiat, S. Y.

S. Y. El-Zaiat, “Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine,” Opt. Laser Technol. 35, 55–60 (2003).
[CrossRef]

Fan, B.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Fang, C.

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Flandes-Aburto, V.

A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998).
[CrossRef]

Garcia-Segungo, C.

A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998).
[CrossRef]

Garcia-Valenzuela, A.

A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998).
[CrossRef]

Ghazy, R.

R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999).
[CrossRef]

Grellmann, K. H.

B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998).
[CrossRef]

Gu, Q.

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Hegazi, E.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003).
[CrossRef]

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica related materials by femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
[CrossRef]

J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Hotta, J.

P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998).
[CrossRef]

Imgartinger, T.

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

Inoue, H.

K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
[CrossRef]

Inouye, H.

J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Jaensch, C. P.

B. Nickel, H. E. Wilhelm, and C. P. Jaensch, “Effect of the Förster energy transfers S1+S1→S0+Sn and S1+ T1→S0+Tm on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behavior,” Opt. Spectrosc. 83, 541–556 (1997).

Jasny, J.

J. Jasny and J. Sepioł, “Single molecules observed by immersion mirror objective. A novel method of finding the orientation of radiating dipole,” Chem. Phys. Lett. 273, 439–443 (1997).
[CrossRef]

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

Judokazis, S.

H. Misawa and S. Judokazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

Juodkazis, S.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Kashioka, M.

K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Kintaka, K.

J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003).
[CrossRef]

Kitamura, N.

K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Koshioka, M.

Lee, I.

S. H. Lee, I. Lee, and J. Yi, “Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications,” Surf. Coat. Technol. 153, 67–71 (2002).
[CrossRef]

Lee, S. H.

S. H. Lee, I. Lee, and J. Yi, “Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications,” Surf. Coat. Technol. 153, 67–71 (2002).
[CrossRef]

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Lucas, J.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Marcinkevicius, A.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Marr, D. W. M.

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Clim. 221, 301 (2000).

Masuhara, H.

P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998).
[CrossRef]

K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, and H. Masuhara, “Three-dimensional space- and time-resolved fluorescence spectroscopy,” Appl. Spectrosc. 45, 1041–1045 (1991).
[CrossRef]

Matsuo, S.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Merrifield, R. E.

P. Avakian and R. E. Merrifield, “Experimental determination of the diffusion length of triplet excitons in anthracene crystals,” Phys. Rev. Lett. 13, 541–543 (1964).
[CrossRef]

Meyer, G. E.

G. E. Meyer and B. Nickel, “Diffusion coefficients of aromatic hydrocarbons in their lowest triplet state: anthracene in hexane, octane, hexadecane, perfluorehexane, and methycyclohexane, pyrene and 9, 10-diphenylantracene in hexane,” Z. Naturforsch. 35A, 503–520 (1980).

Misawa, H.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

H. Misawa and S. Judokazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Mitsuyu, T.

K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
[CrossRef]

Miura, K.

K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica related materials by femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Mizeikis, V.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Nasser, I.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003).
[CrossRef]

Nickel, B.

B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998).
[CrossRef]

B. Nickel, H. E. Wilhelm, and C. P. Jaensch, “Effect of the Förster energy transfers S1+S1→S0+Sn and S1+ T1→S0+Tm on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behavior,” Opt. Spectrosc. 83, 541–556 (1997).

G. E. Meyer and B. Nickel, “Diffusion coefficients of aromatic hydrocarbons in their lowest triplet state: anthracene in hexane, octane, hexadecane, perfluorehexane, and methycyclohexane, pyrene and 9, 10-diphenylantracene in hexane,” Z. Naturforsch. 35A, 503–520 (1980).

B. Nickel, “A modification of the Avakian–Merrifield method for the determination of the diffusion constants of triplet states,” Ber. Bunsenges. Phys. Chem. 76, 582–584 (1972).

B. Nickel and U. Nickel, “The diffusion constant of pyrene molecules in the triplet state in glycerol from −17 °C to +15 °C,” Ber. Bunsenges. Phys. Chem. 76, 584–589 (1972).

Nickel, U.

B. Nickel and U. Nickel, “The diffusion constant of pyrene molecules in the triplet state in glycerol from −17 °C to +15 °C,” Ber. Bunsenges. Phys. Chem. 76, 584–589 (1972).

Nirala, A. K.

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

Nishii, J.

J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003).
[CrossRef]

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Nishiyama, H.

J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003).
[CrossRef]

Pan, Q.

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Peña-Gomar, M.

A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998).
[CrossRef]

Potter Jr., B. G.

B. G. Potter, Jr. and K. Simons-Potter, “Photosensitive point defect in optical glasses: science and applications,” Nucl. Instrum. Methods Phys. Res. B 166–167, 771–781 (2000).
[CrossRef]

Przewlocki, H. M.

H. M. Przewłocki, “Theory and applications of internal photoemission in the MOS systems at low electric fields,” Solid-State Electron. 45, 1241–1250 (2001).
[CrossRef]

Qiu, D.

D. Qiu and V. K. Dihr, “Measurement of refractive index of PF-5060,” Exp. Therm. Fluid Sci. 19, 168–171 (1999).
[CrossRef]

Qiu, J.

K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
[CrossRef]

J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Quemard, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Renn, A.

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Comp. Neurol. 256&257, 6–16 (1999).

Sasaki, K.

P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998).
[CrossRef]

K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

K. Sasaki, M. Koshioka, and H. Masuhara, “Three-dimensional space- and time-resolved fluorescence spectroscopy,” Appl. Spectrosc. 45, 1041–1045 (1991).
[CrossRef]

Sepiol, J.

J. Jasny and J. Sepioł, “Single molecules observed by immersion mirror objective. A novel method of finding the orientation of radiating dipole,” Chem. Phys. Lett. 273, 439–443 (1997).
[CrossRef]

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

Shakher, C.

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

Shen, J.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Shi, W.

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Simons-Potter, K.

B. G. Potter, Jr. and K. Simons-Potter, “Photosensitive point defect in optical glasses: science and applications,” Nucl. Instrum. Methods Phys. Res. B 166–167, 771–781 (2000).
[CrossRef]

Smektala, F.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Stephan, J. S.

B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998).
[CrossRef]

Sun, H.-B.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Sun, X.

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Takahashi, M.

J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003).
[CrossRef]

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Tokuda, Y.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Traber, M.

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

Viravathana, P.

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Clim. 221, 301 (2000).

Walla, P. J.

B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998).
[CrossRef]

Wang, J.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Wild, U. P.

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

Wilhelm, H. E.

B. Nickel, H. E. Wilhelm, and C. P. Jaensch, “Effect of the Förster energy transfers S1+S1→S0+Sn and S1+ T1→S0+Tm on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behavior,” Opt. Spectrosc. 83, 541–556 (1997).

Wu, G.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Yang, T.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Yi, J.

S. H. Lee, I. Lee, and J. Yi, “Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications,” Surf. Coat. Technol. 153, 67–71 (2002).
[CrossRef]

Yin, X.

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Yoko, T.

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Yu, J.

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Zhang, F.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Zhang, Q.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Zhou, B.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Zhou, D.

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

K. Sasaki, M. Kashioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.-B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197–198, 705–709 (2002).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (3)

B. Nickel, “A modification of the Avakian–Merrifield method for the determination of the diffusion constants of triplet states,” Ber. Bunsenges. Phys. Chem. 76, 582–584 (1972).

B. Nickel and U. Nickel, “The diffusion constant of pyrene molecules in the triplet state in glycerol from −17 °C to +15 °C,” Ber. Bunsenges. Phys. Chem. 76, 584–589 (1972).

B. Nickel, K. H. Grellmann, J. S. Stephan, and P. J. Walla, “Keto-enol tautomerism in the triplet states of hydroxyphenylbenzoxazoles in an alkene glass: hydrogen tunneling and isotope effects down to 2 K,” Ber. Bunsenges. Phys. Chem. 102, 436–447 (1998).
[CrossRef]

Chem. Phys. Lett. (1)

J. Jasny and J. Sepioł, “Single molecules observed by immersion mirror objective. A novel method of finding the orientation of radiating dipole,” Chem. Phys. Lett. 273, 439–443 (1997).
[CrossRef]

Exp. Therm. Fluid Sci. (1)

D. Qiu and V. K. Dihr, “Measurement of refractive index of PF-5060,” Exp. Therm. Fluid Sci. 19, 168–171 (1999).
[CrossRef]

J. Clim. (1)

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Clim. 221, 301 (2000).

J. Comp. Neurol. (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Comp. Neurol. 256&257, 6–16 (1999).

J. Non-Cryst. Solids (3)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica related materials by femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998).
[CrossRef]

J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, “Photosensitive and athermal glasses for optical channel waveguides,” J. Non-Cryst. Solids 326&327, 464–471 (2003).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthhélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

J. Phys. Chem. B (1)

P. Borowicz, J. Hotta, K. Sasaki, and H. Masuhara, “Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N, N-dimethylformamide by photon pressure of a focused near-infrared laser beam,” J. Phys. Chem. B 102, 1896–1901 (1998).
[CrossRef]

Mater. Sci. Eng. (1)

G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coating,” Mater. Sci. Eng. 78, 135–139 (2000).
[CrossRef]

Mol. Instrum. Methods Phys. Res. B (1)

K. Miura, H. Inoue, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Mol. Instrum. Methods Phys. Res. B 141, 726–732 (1998).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

B. G. Potter, Jr. and K. Simons-Potter, “Photosensitive point defect in optical glasses: science and applications,” Nucl. Instrum. Methods Phys. Res. B 166–167, 771–781 (2000).
[CrossRef]

J. Qiu, K. Miura, H. Inouye, J. Nishii, and K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Opt. Laser Technol. (3)

S. Y. El-Zaiat, “Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine,” Opt. Laser Technol. 35, 55–60 (2003).
[CrossRef]

R. Ghazy, B. El-Baradie, A. El-Shaer, and F. El-Mekaweg, “Measurements of the refractive indices and refractive indices increment of synthetic PMMA solutions at 488 nm,” Opt. Laser Technol. 31, 335–340 (1999).
[CrossRef]

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring of the refractive index of a crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35, 361–367 (2003).
[CrossRef]

Opt. Lasers Eng. (2)

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser based interferometric techniques,” Opt. Lasers Eng. 31, 455–491 (1999).
[CrossRef]

W. Shi, C. Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, “Refractive index dispersion measurement on nonlinear optical polymer using a V-prism refractometer,” Opt. Lasers Eng. 32, 41–47 (1999).
[CrossRef]

Opt. Mater. (2)

V. Berger, “From photonic band gaps to refractive index engineering,” Opt. Mater. 11, 131–142 (1999).
[CrossRef]

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communication,” Opt. Mater. 9, 192–200 (1998).
[CrossRef]

Opt. Spectrosc. (1)

B. Nickel, H. E. Wilhelm, and C. P. Jaensch, “Effect of the Förster energy transfers S1+S1→S0+Sn and S1+ T1→S0+Tm on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behavior,” Opt. Spectrosc. 83, 541–556 (1997).

Phys. Rev. Lett. (1)

P. Avakian and R. E. Merrifield, “Experimental determination of the diffusion length of triplet excitons in anthracene crystals,” Phys. Rev. Lett. 13, 541–543 (1964).
[CrossRef]

Prog. Polym. Sci. (1)

H. Misawa and S. Judokazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Jasny, J. Sepioł, T. Imgartinger, M. Traber, A. Renn, and U. P. Wild, “Fluorescence microscopy in superfluid helium: single molecule imaging,” Rev. Sci. Instrum. 67, 1425–1430 (1996).
[CrossRef]

Sens. Actuators B (1)

A. Garcia-Valenzuela, M. Peña-Gomar, C. Garcia-Segungo, and V. Flandes-Aburto, “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sens. Actuators B 52, 236–242 (1998).
[CrossRef]

Solid-State Electron. (1)

H. M. Przewłocki, “Theory and applications of internal photoemission in the MOS systems at low electric fields,” Solid-State Electron. 45, 1241–1250 (2001).
[CrossRef]

Surf. Coat. Technol. (1)

S. H. Lee, I. Lee, and J. Yi, “Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications,” Surf. Coat. Technol. 153, 67–71 (2002).
[CrossRef]

Z. Naturforsch. (1)

G. E. Meyer and B. Nickel, “Diffusion coefficients of aromatic hydrocarbons in their lowest triplet state: anthracene in hexane, octane, hexadecane, perfluorehexane, and methycyclohexane, pyrene and 9, 10-diphenylantracene in hexane,” Z. Naturforsch. 35A, 503–520 (1980).

Other (12)

B. Nickel and A. A. Ruth are preparing a manuscript entitled “Application of Smoluchowski’s generalized theory to the kinetics of triplet–triplet annihilation of anthracene in viscous solution after long-pulse excitation,” to be submitted to Phys. Chem. Chem. Phys.

J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970), pp. 372–397.

Ref. 25, pp. 567–594.

C. Synowietz, ed, Organische Verbindungen, Vol. II of Taschenbuch für Physiker und Chemiker (Springer-Verlag, Berlin, 1972), p. 764.

H. G. Boit, ed., Beilsteins Handbuch der Organischen Chemie (Springer-Verlag, Berlin, 1972), Suppl. 4, Vol. I, Sec. I, p. 58.

S. L. Murov, I. Carmichael, and G. L. Hug, eds., Handbook of Photochemistry (Marcel Dekker, New York, 1993), p. 284.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. II, p. 33.69.

E. M. Voronkova, B. N. Gretshushnikov, G. I. Distler, and I. P. Petrov, Optitsheskiie Materaly dla Infrakrasnoi Techniki (Izdatelstvo Nauka, Moscow, 1965), p. 148.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford 1970), p. 96.

A. Kudła, “Fotoeletryczne metody wyznaczenia wysokosci barier potencjalu w struturze MOS,” Ph.D. dissertation to (Prace ITE, Warsaw, 1998), pp. 39–49.

R. Mavrodineau, J. I. Schultz, and O. Menis, eds., Accuracy in Spectrophotometry and Luminescence Measurements (U.S. Government Printing Office, Washington, D.C., 1973), pp. 238–240.

K. Sasaki and H. Misawa, “Laser trapping and scanning micromanipulation of fine particles,” in Microchemistry: Spectroscopy and Chemistry in Small Domains, H. Masuhara, F. C. De Schryver, N. Kitamura, and N. Tamai, eds. (North-Holland, Amsterdam, 1994), pp. 23–34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup: XeCl, excimer laser; DL, dye laser; M1M3, mirrors; PP, plane-parallel plate; C, cryostat; RS, rotary stage; AL, achromatic lens; S, slit; PD, photodiode; CU, rotational stage controller; PC, computer; α, measured angle.

Fig. 2
Fig. 2

Optical assembly in a cryostat. (a) For solvents, on each side of the optical axis: α, angle measured; γ, basic angle of the cell; β1, basic angle of the prism; αg, angle between the incident laser beam and the wall of the triangular cuvette. n, refractive index of the solvent; nsilica, refractive index of fused silica. (b) For a fused-silica prism: α1, α2, angles measured; β2 on each side of the optical axis, basic angle of the prism; ψ, angle of the prism.

Fig. 3
Fig. 3

Refractive index of fused silica (Suprasil 1) measured at 293 and 143 K as a function of wavelength (spectral range, 346–380 nm).

Fig. 4
Fig. 4

Refractive index of fused silica at λ=365 nm as a function of temperature (from 143 to 293 K). A linear regression yielded the straight line, which was calculated with nsilica(T)=n1T+n0 for n1=(7.83±0.99)×10-6 K-1 and n0=1.47219±2.2×10-4. The error bars show the error of ±3×10-4.

Fig. 5
Fig. 5

Refractive index of the binary solvent mixtures as a function of wavelength and temperature: (a) ct-DMCH (temperature range, 133–293 K; spectral ranges, 346–399 and 570–608 nm), (b) ECHMCH (temperature range, 135–293 K; spectral range, 369–399 nm).

Fig. 6
Fig. 6

Refractive index of 3MP as a function of wavelength and temperature. Temperature range, 133–293 K; spectral ranges, 346–399 and 480–553 nm.

Tables (3)

Tables Icon

Table 1 Refractive Index n of CCl4 Compared with Data from the Literature for Several Temperatures and Wavelengths

Tables Icon

Table 2 Comparison of the Refractive Index of Fused Silica Measured at 293 K with Literature Valuesa

Tables Icon

Table 3 Refractive Index of 3MP as a Function of Wavelength and Temperaturea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ=(2π/d)2D.
n=nprism+nair sin(αg)cos(αg)sin(αg)2+[nair sin(αg)]21/2,
nprism=nsilica sinβ1-arcsinsin(β1+α)nsilica
nsilica=sin[(α1+α2/2)+β2]sin(β2-ψ),

Metrics