Abstract

Expressions relating complex third-order optical susceptibility (χ(3)=χR(3)+iχI(3)) with nonlinear refractive index (n2) and nonlinear absorption coefficient (β) have been formulated that eliminate the commonly used approximation of a negligible linear absorption coefficient. The resulting equations do not show the conventional linear dependence of χR(3) with n2 and χI(3) with β. Nonlinear refraction and absorption result instead from the interplay between the real and imaginary parts of the first- and third-order susceptibilities of the material. This effect is illustrated in the case of a metal–dielectric nanocomposite for which n2 and β values were experimentally obtained by Z-scan measurements and for which the use of the new formulas for χR(3) and χI(3) yield a large correction and a sign reversal for χI(3).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription