Abstract

Interband photorefraction in near-stoichiometric lithium tantalate is demonstrated and investigated at the deep-ultraviolet (UV) wavelength λUV=257 nm. Formation of two distinct grating components is directly observed in depth-resolved measurements. The diffraction efficiency of a Bragg grating is measured as a function of the UV light intensity, the grating spacing, and the depth of the readout beam beneath the crystal surface. Typical time constants for the interband effects are of the order of a few tens of milliseconds for UV light intensities of approximately 100 mW/cm2, 3 orders of magnitude faster than the time constants reported previously for lithium tantalate.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
    [CrossRef]
  2. Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
    [CrossRef]
  3. Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
    [CrossRef]
  4. M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
    [CrossRef]
  5. P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vol. 1.
  6. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects in KNbO3 induced by ultraviolet illumination,” Opt. Lett. 18, 1144–1146 (1993).
    [CrossRef]
  7. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
    [CrossRef]
  8. P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Günter, “High-resolution, high-speed photorefractive incoherent-to-coherent optical converter,” Opt. Lett. 24, 199–201 (1999).
    [CrossRef]
  9. R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
    [CrossRef]
  10. Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
    [CrossRef]
  11. Ph. Dittrich, G. Montemezzani, and P. Günter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
    [CrossRef]
  12. T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979).
    [CrossRef]
  13. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
    [CrossRef]
  14. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
    [CrossRef]
  15. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999).
    [CrossRef]
  16. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
    [CrossRef]
  17. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003).
    [CrossRef] [PubMed]
  18. R. Ryf, “Optical parallel processing based on the photorefractive effect,” Ph.D. thesis (Swiss Federal Institute of Technology, Zürich, Switzerland, 2000), available at http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13546.
  19. D. R. Linde, Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1992–1993).
  20. E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
    [CrossRef]
  21. P. Günter, ed., Nonlinear Optical Effects and Materials, Vol. 72 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  22. P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68, 833–842 (1999).
    [CrossRef]
  23. M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001).
    [CrossRef]
  24. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [CrossRef]
  25. B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970).
    [CrossRef]
  26. J. Xu, G. Zhang, F. Li, X. Zhang, Q. Sun, S. Liu, F. Song, Y. Kong, X. Chen, H. Qiao, J. Yao, and Z. Lijuan, “Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals,” Opt. Lett. 25, 129–131 (2000).
    [CrossRef]

2003 (2)

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

Ph. Dittrich, G. Montemezzani, and P. Günter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

2001 (2)

M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

2000 (1)

1999 (6)

P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Günter, “High-resolution, high-speed photorefractive incoherent-to-coherent optical converter,” Opt. Lett. 24, 199–201 (1999).
[CrossRef]

Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68, 833–842 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
[CrossRef]

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

1997 (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

1994 (1)

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[CrossRef]

1993 (1)

1992 (2)

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

1979 (1)

T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979).
[CrossRef]

1978 (1)

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

1970 (1)

B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970).
[CrossRef]

Agulló-López, F.

M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001).
[CrossRef]

Asano, H.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Bäumer, Ch.

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

Bernasconi, P.

P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68, 833–842 (1999).
[CrossRef]

Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
[CrossRef]

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Günter, “High-resolution, high-speed photorefractive incoherent-to-coherent optical converter,” Opt. Lett. 24, 199–201 (1999).
[CrossRef]

Betzler, K.

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

Biaggio, I.

Blau, P.

Bruner, A.

Carrascosa, M.

M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001).
[CrossRef]

Chen, X.

Cound, V. M.

B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970).
[CrossRef]

David, C.

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

Davies, P. H.

B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970).
[CrossRef]

Dittrich, Ph.

Ph. Dittrich, G. Montemezzani, and P. Günter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
[CrossRef]

Eger, D.

Fukuda, T.

T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979).
[CrossRef]

Furukawa, Y.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
[CrossRef]

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

Grabar, A. A.

Günter, P.

Ph. Dittrich, G. Montemezzani, and P. Günter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Günter, “High-resolution, high-speed photorefractive incoherent-to-coherent optical converter,” Opt. Lett. 24, 199–201 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68, 833–842 (1999).
[CrossRef]

Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects in KNbO3 induced by ultraviolet illumination,” Opt. Lett. 18, 1144–1146 (1993).
[CrossRef]

Hatano, H.

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

Hayashi, T.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Hesse, H.

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

Higuchi, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

Hirano, H.

T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979).
[CrossRef]

Hulme, K. G.

B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970).
[CrossRef]

Ito, T.

T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979).
[CrossRef]

Iyi, N.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Izumi, F.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jazbinšek, M.

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

Katz, M.

Kimura, S.

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kitamura, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kong, Y.

Krätzig, E.

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Li, F.

Lijuan, Z.

Liu, S.

Luther-Davies, B.

B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970).
[CrossRef]

Matsumura, S.

T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979).
[CrossRef]

Montemezzani, G.

Ph. Dittrich, G. Montemezzani, and P. Günter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Günter, “High-resolution, high-speed photorefractive incoherent-to-coherent optical converter,” Opt. Lett. 24, 199–201 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68, 833–842 (1999).
[CrossRef]

Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
[CrossRef]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects in KNbO3 induced by ultraviolet illumination,” Opt. Lett. 18, 1144–1146 (1993).
[CrossRef]

Nakamura, M.

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

Niwa, K.

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999).
[CrossRef]

Orlowski, R.

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Oron, M. B.

Qiao, H.

Rogin, P.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects in KNbO3 induced by ultraviolet illumination,” Opt. Lett. 18, 1144–1146 (1993).
[CrossRef]

Ruschin, S.

Ryf, R.

Song, F.

Stoika, I. M.

Sun, Q.

Suzuki, E.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999).
[CrossRef]

Takekawa, S.

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

Terabe, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

Tunyagi, A.

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

Vysochanskii, Yu. M.

Wintermantel, M.

Wöhlecke, M.

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

Xu, J.

Yamamoto, J. K.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Yao, J.

Zgonik, M.

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects in KNbO3 induced by ultraviolet illumination,” Opt. Lett. 18, 1144–1146 (1993).
[CrossRef]

Zhang, G.

Zhang, X.

Appl. Phys. (1)

E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Appl. Phys. B (3)

P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68, 833–842 (1999).
[CrossRef]

M. Carrascosa, F. Agulló-López, G. Montemezzani, and P. Günter, “Photorefractive gratings generated by band-gap excitation: application to KNbO3,” Appl. Phys. B 72, 697–700 (2001).
[CrossRef]

M. Jazbinšek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, “Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams,” Appl. Phys. B 75, 891–894 (2002).
[CrossRef]

Ferroelectrics (1)

P. Bernasconi, G. Montemezzani, P. Günter, Y. Furukawa, and K. Kitamura, “Stoichiometric LiTaO3 for ultraviolet photorefraction,” Ferroelectrics 223, 373–379 (1999).
[CrossRef]

J. Appl. Phys. (1)

Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium tantalate,” J. Appl. Phys. 93, 3102–3104 (2003).
[CrossRef]

J. Cryst. Growth (3)

T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, “Growth of LiTaO3 single crystal for saw device applications,” J. Cryst. Growth 46, 179–184 (1979).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197, 889–895 (1999).
[CrossRef]

J. Phys. C (1)

B. Luther-Davies, P. H. Davies, V. M. Cound, and K. G. Hulme, “The signs of the electro-optic coefficients for lithium tantalate,” J. Phys. C 3, L106–L107 (1970).
[CrossRef]

J. Solid State Chem. (1)

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, “Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range,” Jpn. J. Appl. Phys. 38, 1816–1819 (1999).
[CrossRef]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41, L465–L467 (2002).
[CrossRef]

Opt. Commun. (1)

Ph. Dittrich, G. Montemezzani, and P. Günter, “Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings,” Opt. Commun. 214, 363–370 (2002).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. B (1)

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[CrossRef]

Phys. Rev. E (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Other (4)

P. Günter, ed., Nonlinear Optical Effects and Materials, Vol. 72 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
[CrossRef]

R. Ryf, “Optical parallel processing based on the photorefractive effect,” Ph.D. thesis (Swiss Federal Institute of Technology, Zürich, Switzerland, 2000), available at http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13546.

D. R. Linde, Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1992–1993).

P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wavelength dependence of the absorption constant α of the near-stoichiometric LT crystals and of the congruent sample. αa and αc indicate the absorption constants for light polarized parallel to the a axis and c axis of the crystal, respectively.

Fig. 2
Fig. 2

Experimental setup (schematic) and crystal orientation for Bragg diffraction measurements in (a) longitudinal geometry and (b) transverse geometry.

Fig. 3
Fig. 3

Side view of setup (schematic) for indirect measurement of the absorption constant. Detailed explanations are given in the text.

Fig. 4
Fig. 4

Intensity dependence of the photoconductivity σph under interband photoexcitation in SLT. The illuminating light has the wavelength λUV=257 nm, and the applied electric field is E=1.4 kV/cm and is directed along the spontaneous polarization of the crystal (c axis). The solid lines represent the linear and the square-root intensity dependence. Ic=12.5 mW/cm2 defines the approximate transition intensity between the two regimes.

Fig. 5
Fig. 5

Square root of the Bragg diffraction efficiency in the longitudinal geometry as a function of the intensity of the UV writing beams for a SLT crystal with thickness d=2 mm. The dashed line represents the best fit according to relation (5). The scale on the right indicates the corresponding diffraction efficiency.

Fig. 6
Fig. 6

Simplified two-layer grating model for the interband photorefractive effect. (a) UV light intensity and modeled structure of the two gratings. (b) Schematic view of a diffraction experiment. Detailed explanations are given in the text.

Fig. 7
Fig. 7

Dependence of Bragg diffraction efficiency η on the depth of the readout beam d beneath the illuminated surface. The solid vertical line at d=0 µm marks the crystal surface. The exponential decrease (α=450 cm-1) of the UV intensity inside the crystal is indicated by the solid curve. The UV intensity at the crystal surface is IUV=140 mW/cm2. The thickness of the interband grating is approximately db65 µm, and the thickness of the trap grating is dt250 µm.

Fig. 8
Fig. 8

Dependence of Bragg diffraction efficiency η on the grating spacing. The solid curve represents the theoretical curve according to Eqs. (8) and (9). The dashed curve represents the curve according to Eqs. (8) and (10). The crystal thickness is d=7.9 mm.

Fig. 9
Fig. 9

Grating recording and erasure times as a function of UV illumination intensity for SLT and CLT. Data points are connected by curves for guidance of the eye. The dashed line indicates the theoretical power-law dependence for an interband grating with τI-0.5 (λUV=257 nm). The critical intensity Ic=12.5 mW/cm2 is marked by the vertical dotted line. The indices of the time constants are explained in the text.

Tables (1)

Tables Icon

Table 1 Crystals Investigated in this Paper

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

αUV=1d2-d1 lnI2I1.
σph=-αIUVbE ΔIelΔIUV,
τdiel=eff 0σdark45 min,
FM=ϕμτR=σph hνeαUV IUV.
ηΔnα lnIIref,
db1αUV lnI0Ic.
dt1αUV lnIcId.
η=sin2π2λ gp gscos θp cos θs1/2(npns)3/2reffEscd,
Esc=EDEREqf(ED+2Eqf)(ED+ER),
Esc=EDEqED+Eq,

Metrics