Abstract

We report a theoretical analysis of third-harmonic generation (THG) in a LiNbO3 channel waveguide with a quasi-periodic grating. For efficient third-harmonic conversion, apart from a large nonlinear coefficient and quasi-phase-matching conditions, a large overlap integral between the interacting waves is needed, which can be achieved in a microstructured waveguide. The dependence of the optimum interaction length on the fundamental power is described. The effects of the width of the mask opening and of the annealing depth on the THG are determined. The relationship among the bandwidths and the fundamental wavelength and the operating temperature as well as the width of the mask opening are also given. The results might be useful for the fabrication of a practical device.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12, pp. 521–531.
  2. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
    [CrossRef]
  3. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [CrossRef]
  4. T. Kartaloğlu, K. G. Köprülü, and O. Aytür, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280–282 (1997).
    [CrossRef]
  5. V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171–2173 (1995).
    [CrossRef] [PubMed]
  6. K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
    [CrossRef]
  7. K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [CrossRef]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  9. A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739–1741 (1998).
    [CrossRef]
  10. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixing in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
    [CrossRef] [PubMed]
  11. X. Mu and Y. J. Ding, “Efficient third-harmonic generation in partly periodically poled KTiOPO4 crystal,” Opt. Lett. 26, 623–625 (2001).
    [CrossRef]
  12. X. Mu, W. Shi, and Y. J. Ding, “Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of a pulsed Nd:YAG laser,” J. Appl. Phys. 93, 9437–9440 (2003).
    [CrossRef]
  13. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
    [CrossRef]
  14. C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000).
    [CrossRef]
  15. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
    [CrossRef]
  16. Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
    [CrossRef]
  17. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
    [CrossRef]
  18. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
    [CrossRef]
  19. K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999).
    [CrossRef]
  20. F. A. Katsriku, B. M. Azizur, and K. T. V. Grattan, “Finite element analysis of diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780–786 (1996).
    [CrossRef]
  21. T. Suhara, Y. Handa, H. Nishihara, and J. Koyama, “Analysis of optical channel waveguides and directional couplers with graded-index profiles,” J. Opt. Soc. Am. 69, 807–815 (1979).
    [CrossRef]
  22. M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor,” IEEE Trans. Microwave Theory Tech. MTT-32, 587–593 (1984).
    [CrossRef]
  23. X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992).
    [CrossRef]
  24. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
    [CrossRef]
  25. J. Khurgin, “Improvement of frequency-conversion efficiency in waveguides with rotationally twinned layers,” Opt. Lett. 13, 603–605 (1988).
    [CrossRef] [PubMed]
  26. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
    [CrossRef]
  27. D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
    [CrossRef]
  28. S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
    [CrossRef]
  29. X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991).
    [CrossRef]

2003 (1)

X. Mu, W. Shi, and Y. J. Ding, “Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of a pulsed Nd:YAG laser,” J. Appl. Phys. 93, 9437–9440 (2003).
[CrossRef]

2001 (3)

2000 (2)

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

1999 (3)

K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999).
[CrossRef]

1998 (2)

K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739–1741 (1998).
[CrossRef]

1997 (6)

T. Kartaloğlu, K. G. Köprülü, and O. Aytür, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280–282 (1997).
[CrossRef]

O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixing in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
[CrossRef] [PubMed]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

1996 (1)

F. A. Katsriku, B. M. Azizur, and K. T. V. Grattan, “Finite element analysis of diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780–786 (1996).
[CrossRef]

1995 (2)

1992 (1)

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992).
[CrossRef]

1991 (1)

X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991).
[CrossRef]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[CrossRef]

1989 (1)

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

1988 (1)

1984 (1)

M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor,” IEEE Trans. Microwave Theory Tech. MTT-32, 587–593 (1984).
[CrossRef]

1983 (1)

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
[CrossRef]

1979 (1)

Arie, A.

K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739–1741 (1998).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Asher, S. E.

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

Aytür, O.

Azizur, B. M.

F. A. Katsriku, B. M. Azizur, and K. T. V. Grattan, “Finite element analysis of diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780–786 (1996).
[CrossRef]

Batchko, R. G.

Bosenberg, W. R.

Byer, R. L.

Cao, X. F.

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992).
[CrossRef]

X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991).
[CrossRef]

Chen, Y. B.

Chou, M. H.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

Clark, D. F.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
[CrossRef]

Curl, R. F.

K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

De La Rue, R. M.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
[CrossRef]

Ding, Y. J.

X. Mu, W. Shi, and Y. J. Ding, “Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of a pulsed Nd:YAG laser,” J. Appl. Phys. 93, 9437–9440 (2003).
[CrossRef]

X. Mu and Y. J. Ding, “Efficient third-harmonic generation in partly periodically poled KTiOPO4 crystal,” Opt. Lett. 26, 623–625 (2001).
[CrossRef]

Eckardt, R. C.

Eger, D.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Fejer, M. M.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Fradkin-Kashi, K.

K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999).
[CrossRef]

Fujimura, M.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

Garashi, A.

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

Grattan, K. T. V.

F. A. Katsriku, B. M. Azizur, and K. T. V. Grattan, “Finite element analysis of diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780–786 (1996).
[CrossRef]

Handa, Y.

Hayata, K.

M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor,” IEEE Trans. Microwave Theory Tech. MTT-32, 587–593 (1984).
[CrossRef]

Hollberg, L.

Kartaloglu, T.

Kato, M.

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

Katsriku, F. A.

F. A. Katsriku, B. M. Azizur, and K. T. V. Grattan, “Finite element analysis of diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780–786 (1996).
[CrossRef]

Katz, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Khurgin, J.

Kitaoka, Y.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

Köprülü, K. G.

Koshiba, M.

M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor,” IEEE Trans. Microwave Theory Tech. MTT-32, 587–593 (1984).
[CrossRef]

Koyama, J.

Laybourn, P. J. R.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
[CrossRef]

Levenson, M. D.

Liu, H.

Mahal, V.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Mickelson, A. R.

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

Miller, G. D.

Ming, N. B.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

Mizuuchi, K.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

Mu, X.

X. Mu, W. Shi, and Y. J. Ding, “Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of a pulsed Nd:YAG laser,” J. Appl. Phys. 93, 9437–9440 (2003).
[CrossRef]

X. Mu and Y. J. Ding, “Efficient third-harmonic generation in partly periodically poled KTiOPO4 crystal,” Opt. Lett. 26, 623–625 (2001).
[CrossRef]

Myers, L. E.

Narumi, K.

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

Natour, J.

X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991).
[CrossRef]

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[CrossRef]

T. Suhara, Y. Handa, H. Nishihara, and J. Koyama, “Analysis of optical channel waveguides and directional couplers with graded-index profiles,” J. Opt. Soc. Am. 69, 807–815 (1979).
[CrossRef]

Noack, F.

Nutt, A. C. G.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
[CrossRef]

Oron, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Parameswaran, K. R.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

Petrov, K. P.

K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Petrov, V.

Pfister, O.

Pierce, J. W.

Qin, Y. Q.

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

Ramaswamy, R. V.

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992).
[CrossRef]

X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991).
[CrossRef]

Roseman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Rosenman, G.

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739–1741 (1998).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Shi, W.

X. Mu, W. Shi, and Y. J. Ding, “Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of a pulsed Nd:YAG laser,” J. Appl. Phys. 93, 9437–9440 (2003).
[CrossRef]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739–1741 (1998).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Srivastava, R.

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992).
[CrossRef]

X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991).
[CrossRef]

Sugita, T.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Suhara, T.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[CrossRef]

T. Suhara, Y. Handa, H. Nishihara, and J. Koyama, “Analysis of optical channel waveguides and directional couplers with graded-index profiles,” J. Opt. Soc. Am. 69, 807–815 (1979).
[CrossRef]

Suzuki, M.

M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor,” IEEE Trans. Microwave Theory Tech. MTT-32, 587–593 (1984).
[CrossRef]

Tittel, F. K.

K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Tulloch, W. M.

Van Baak, D. A.

Vohra, S. T.

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

Wang, H. T.

Wei, H.

Weise, D. R.

Wells, J. S.

Wong, K. K.

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
[CrossRef]

Yamamoto, K.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

Yang, S. X.

Yokoyama, T.

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

Zhang, C.

Zhu, S. N.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

Zhu, Y. Y.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Zink, L.

Appl. Phys. B (1)

K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Bull. Mater. Sci. (1)

Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999).
[CrossRef]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000).
[CrossRef]

X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor,” IEEE Trans. Microwave Theory Tech. MTT-32, 587–593 (1984).
[CrossRef]

J. Appl. Phys. (3)

D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983).
[CrossRef]

S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 waveguides,” J. Appl. Phys. 66, 5161–5174 (1989).
[CrossRef]

X. Mu, W. Shi, and Y. J. Ding, “Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of a pulsed Nd:YAG laser,” J. Appl. Phys. 93, 9437–9440 (2003).
[CrossRef]

J. Lightwave Technol. (2)

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992).
[CrossRef]

F. A. Katsriku, B. M. Azizur, and K. T. V. Grattan, “Finite element analysis of diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780–786 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Opt. Commun. (1)

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997).
[CrossRef]

Opt. Lett. (9)

V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171–2173 (1995).
[CrossRef] [PubMed]

T. Kartaloğlu, K. G. Köprülü, and O. Aytür, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280–282 (1997).
[CrossRef]

O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixing in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997).
[CrossRef] [PubMed]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739–1741 (1998).
[CrossRef]

X. Mu and Y. J. Ding, “Efficient third-harmonic generation in partly periodically poled KTiOPO4 crystal,” Opt. Lett. 26, 623–625 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000).
[CrossRef]

J. Khurgin, “Improvement of frequency-conversion efficiency in waveguides with rotationally twinned layers,” Opt. Lett. 13, 603–605 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997).
[CrossRef]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12, pp. 521–531.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependence of conversion efficiency on waveguide’s length L for D=11.88µm, DA=14.41µm, DB=11.08µm, l=5.54µm, γ=0.056, w=5µm, da=4.30µm, and PF=100 mW.

Fig. 2
Fig. 2

Dependence of optimum interaction Lmax on fundamental power PF.

Fig. 3
Fig. 3

Dependence of maximum TH efficiency (phase-matching case) on width of the mask opening w for da=4.30µm.

Fig. 4
Fig. 4

Dependence of maximum TH efficiency (phase-matching case) on annealing depth da for w=5µm.

Fig. 5
Fig. 5

Dependence of normalized THG efficiency on fundamental wavelength λF for T0=120 °C and w=5µm.

Fig. 6
Fig. 6

Dependence of normalized THG efficiency on temperature T for λF=1.342µm and w=5µm.

Fig. 7
Fig. 7

Dependence of normalized THG efficiency on width of the mask opening w for T0=120 °C and λF=1.342µm.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

2y2+αz-2 2z2+k02n(y, z)2-β2Hy(y, z)=0,
n(y, z)=ne+Δne(λ)g(y)f(z),
g(y)=erf[(w-2y)/2dy]+erf[(w+2y)/2dy]2 erf(w/2dy),
f(z)=erf[(h-z)/dz]+erf[(h+z)/dz]2 erf(h/dz).
Hy(z=0)continuous,
1αzn2 Hy(z=0)z continuous.
Ez-βω0n2Hy.
iωμ0t×(t×Et)+eˆx×Htx-iωEt=iωPNL,
Et(x, y, z)=mAm(x)Etm(y, z)exp(-iβmx),
Ht(x, y, z)=mAm(x)Htm(y, z)exp(-iβmx),
 Re[½ (Etm×Htm*)]eˆxdydz=δmn,
dAm(x)dx=-i ω2 -Etm*(y, z)·PNL(x, y, z)exp(iβmx)dydz.
P1=20deff(x, y, z){A2(x)A1*(x)E2(y, z)E1*(y, z)×exp[-i(β2-β1)x]+A3(x)A2*(x)E3(y, z)E2*(y, z)×exp[-i(β3-β2)x]},
P2=20deff(x, y, z){1/2A12(x)E12(y, z)×exp(-i2β1x)+A3(x)A1*(x)E3(y, z)E1*(y, z)×exp[-i(β3-β1)x]},
P3=20deff(x, y, z)A2(x)A1(x)E2(y, z)E1(y, z)×exp[-i(β1+β2)x],
deff=d33m,ngm,n exp(iGm,nx),
Gm,n=2π(m+nγ)/D,
D=γDA+DB,
dA1(x)dx=-iω1[κ1A2A1* exp(-iΔβ1x)+κ2A3A2* exp(-iΔβ2x)],
dA2(x)dx=-iω2[1/2κ1A12 exp(iΔβ1x)+κ2A3A1* exp(-iΔβ2x)],
dA3(x)dx=-iω3κ2A2A1 exp(iΔβ2x),
Δβ1=β2-2β1-Gm,n,
Δβ2=β3-β2-β1-Gm,n,
κ1=2d33gm,n2μ0cN12N2S11/2,
κ2=2d33gm,n2μ0cN1N2N3S21/2,
S1=|ψ1|2dydz2|ψ2|2dydzψ2*ψ12dydz2,
S2=|ψ1|2dydz|ψ2|2dydz|ψ3|2dydzψ3*ψ2ψ1dydz2,
Pj=½0Njc|Ej(x, y, z)|2dydz=|Aj(z)|2.
ηj=|Aj/A10|2,
Δβ1(ωF+δωF, T0, w)
=Δβ1(ωF, T0, w)+2δωF(β2/ω|2ωF-β1/ω|ωF)+O[(ωF)2]2δωF(β2/ω|2ωF-β1/ω|ωF),
Δβ2(ωF+δωF, T0, w)
δωF(3β3/ω|3ωF-2β2/ω|2ωF-β1/ω|ωF).
Δβ1(λF, T0+δT0, w)
=9.7651×10-5(T-120)µm-1,
Δβ2(λF, T0+δT0, w)
=4.1421×10-4(T-120)µm-1
Δβ1(λF, T0, w+δw)
=-5.0586×10-4(w-5)µm-1,
Δβ2(λF, T0, w+δw)
=-3.9414×10-4(w-5)µm-1.

Metrics