Abstract

A model has been developed to describe the dynamic behavior of radiation-balanced cw laser oscillators. We have derived algebraic equations and analytic expressions from the set of coupled rate equations and the requirements for radiation balance. The analytic expression predicts that the characteristics of a radiation-balanced laser are explicitly affected only by temperature, cavity parameters, and fundamental material properties. Several figures are generated from the derived expressions by use of Yb:KGW as an example. From these figures, the output characteristics of radiation-balanced laser oscillators are well revealed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, and S. A. Payne, “High-power dual-rod Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
    [Crossref]
  2. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26, 1672–1674 (2001).
    [Crossref]
  3. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
    [Crossref]
  4. H. Bruesselbach, “Power scaling issues for Yb:YAG lasers,” in OSA Annual Meeting (Optical Society of America, Washington, D.C., 2001).
  5. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenzund Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [Crossref]
  6. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [Crossref]
  7. G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, “Low temperature laser cooling with a rare-earth doped glass,” J. Appl. Phys. 84, 509–516 (1998).
    [Crossref]
  8. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
    [Crossref]
  9. J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
    [Crossref]
  10. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
    [Crossref]
  11. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
    [Crossref]
  12. S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
    [Crossref]
  13. C. E. Mungan, “Thermodynamics of radiation-balanced lasing,” J. Opt. Soc. Am. B 20, 1075–1082 (2003).
    [Crossref]
  14. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
    [Crossref]
  15. S. R. Bowman and C. E. Mungan, “Selecting materials for radiation balanced lasers,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 446.
  16. S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 180.

2003 (1)

2002 (1)

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

2001 (2)

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26, 1672–1674 (2001).
[Crossref]

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[Crossref]

2000 (4)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[Crossref]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[Crossref]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, and S. A. Payne, “High-power dual-rod Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[Crossref]

1999 (1)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[Crossref]

1998 (1)

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, “Low temperature laser cooling with a rare-earth doped glass,” J. Appl. Phys. 84, 509–516 (1998).
[Crossref]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

1987 (1)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenzund Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Adam, J. L.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[Crossref]

Balda, R.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[Crossref]

Beach, R. J.

Bowman, S. R.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[Crossref]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[Crossref]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Emanuel, M. A.

Epstein, R. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[Crossref]

Feldman, B. J.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

Fernández, J.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[Crossref]

Friese, M. E. J.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[Crossref]

García, A. J.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[Crossref]

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Goodno, G. D.

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Grousson, R.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, “Low temperature laser cooling with a rare-earth doped glass,” J. Appl. Phys. 84, 509–516 (1998).
[Crossref]

Harkenrider, J.

Heckenberg, N. R.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[Crossref]

Honea, E. C.

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Injeyan, H.

Jenkins, N. W.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

Lamouche, G.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, “Low temperature laser cooling with a rare-earth doped glass,” J. Appl. Phys. 84, 509–516 (1998).
[Crossref]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Lavallard, P.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, “Low temperature laser cooling with a rare-earth doped glass,” J. Appl. Phys. 84, 509–516 (1998).
[Crossref]

Mendioroz, A.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[Crossref]

Mitchell, S. C.

Mungan, C. E.

C. E. Mungan, “Thermodynamics of radiation-balanced lasing,” J. Opt. Soc. Am. B 20, 1075–1082 (2003).
[Crossref]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

O’Connor, S. P.

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

Palese, S.

Payne, S. A.

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenzund Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Rayner, A.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[Crossref]

Rubinsztein-Dunlop, H.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[Crossref]

Skidmore, J. A.

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Suris, R.

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, “Low temperature laser cooling with a rare-earth doped glass,” J. Appl. Phys. 84, 509–516 (1998).
[Crossref]

Sutton, S. B.

Truscott, A. G.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[Crossref]

Appl. Phys. B (1)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
[Crossref]

IEEE J. Quantum Electron. (3)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[Crossref]

S. R. Bowman, N. W. Jenkins, S. P. O’Connor, and B. J. Feldman, “Sensitivity and stability of a radiation-balanced laser system,” IEEE J. Quantum Electron. 38, 1339–1348 (2002).
[Crossref]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

J. Appl. Phys. (1)

G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, “Low temperature laser cooling with a rare-earth doped glass,” J. Appl. Phys. 84, 509–516 (1998).
[Crossref]

J. Mod. Opt. (1)

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
[Crossref]

Z. Phys. (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenzund Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Other (3)

H. Bruesselbach, “Power scaling issues for Yb:YAG lasers,” in OSA Annual Meeting (Optical Society of America, Washington, D.C., 2001).

S. R. Bowman and C. E. Mungan, “Selecting materials for radiation balanced lasers,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 446.

S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 180.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Generic quasi-two-level energy diagram with the pump and lasing transitions.

Fig. 2
Fig. 2

Intracavity laser intensity IL and pump intensity IP within the laser medium for different output-coupler reflectivities. During the calculation, R1=0.995 and αl=3. The intensities are normalized to their saturation values as defined by Eqs. (4a) and (4b).

Fig. 3
Fig. 3

Normalized average intracavity intensity, normalized average pump intensity, and normalized output intensity as functions of output-coupler reflectivity. During the calculation, R1=0.995 and αl=3. The intensities are normalized to their saturation values as defined by Eqs. (4a) and (4b).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

IL+z=σL[(fa+fb)N2-faNT]IL+,
IL-z=-σL[(fa+fb)N2-faNT]IL-,
N2=fapNTfap+fbpIPIP+IPsat,
IL=fap(fa+fb)IPILsat(fapfb-fbpfa)IP-fa(fap+fbp)IPsat,
ILsat=hνLσLτ(fa+fb)νF-νPνP-νL,
IPsat=hνPσPτ(fap+fbp)νF-νLνP-νL,
νF=p0νFpdνp0Fpdν,
IL=IL++IL-.
IL+=αILsatIL+IL++IL--ILsat,
IL-=-αILsatIL-IL++IL--ILsat,
Iout=(1-R2)IL+(l)=(1-R2)(αl-ln R1R2)ILsat1+R2R11/2(1-R1R2).
Iout=(αl-ln R2)ILsat.
IL+(0)=R1IL-(0),
IL-(l)=R2IL+(l).
IL+IL+=-IL-IL-IL+(z)IL-(z)=C1,
C1=R2IL+2(l)=R1IL-2(0).
IL++C1IL+IL+2-ILsatIL+IL+=αILsat.
IL+-C1IL+-ILsat ln IL+=αILsatz+C2,
IL+(0)-C1IL+(0)-ILsat ln IL+(0)=C2.
C2=-(1-R1)R2R11/2IL+(l)-ILsat ln R1R2-ILsat ln IL+(l).
IL+(l)-C1IL+(l)-ILsat ln IL+(l)=αILsatl+C2.
IL+(l)=(αl-ln R1R2)ILsat1+R2R11/2(1-R1R2),

Metrics