Abstract

It is shown that electromagnetic energy can be localized to defect regions bounded by parallel planar walls perpendicular to the stack surface in Bragg stacks of two-dimensional photonic crystals. These regions produce larger bandgaps than single-photonic-crystal slabs. Group velocity and dispersion relations can easily be tailored by choice of the proper geometry and materials. Results indicate that such photonic crystals might facilitate photonic trapping and storage together with advanced photonic manipulations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  4. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
    [CrossRef] [PubMed]
  5. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
    [CrossRef]
  6. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
    [CrossRef]
  7. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
    [CrossRef]
  8. M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, “Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap,” Opt. Lett. 27, 1785–1787 (2002).
    [CrossRef]
  9. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
    [CrossRef]
  10. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002).
    [CrossRef]
  11. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
    [CrossRef]
  12. C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
    [CrossRef] [PubMed]
  13. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
    [CrossRef]
  14. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
    [CrossRef] [PubMed]
  15. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
    [CrossRef] [PubMed]
  16. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000).
    [CrossRef]
  17. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  18. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  19. Z. Jakšić, O. Jakšić, Z. Djurić, P. Krstajić, Ž. Lazić, D. Tanasković, and M. Popović, “Simple quasi-3D photonic crystal planar optical waveguides,” in Proceedings of the Fifth International Conference on Telecommunications in Modern Satellite Cable and Broadcasting Service (TELSIKS 2001)(Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), Vol. 2, pp. 389–392.
  20. K. H. Dridi, “Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals,” Opt. Express 11, 1156–1165 (2003), http://www.optics express.org/abstract.cfm?URI=OPEX-11–10–1156.
    [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8–3-173.
    [CrossRef] [PubMed]
  22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotycally single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-9–13–748.
    [CrossRef] [PubMed]
  23. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [CrossRef] [PubMed]
  24. T. Søndergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000).
    [CrossRef]
  25. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  26. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [CrossRef] [PubMed]
  27. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
    [CrossRef] [PubMed]
  28. M. Fleischhauer and M. D. Lukin, “Electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef] [PubMed]

2003

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

K. H. Dridi, “Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals,” Opt. Express 11, 1156–1165 (2003), http://www.optics express.org/abstract.cfm?URI=OPEX-11–10–1156.
[CrossRef] [PubMed]

2002

M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, “Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap,” Opt. Lett. 27, 1785–1787 (2002).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

2001

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8–3-173.
[CrossRef] [PubMed]

E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotycally single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-9–13–748.
[CrossRef] [PubMed]

2000

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000).
[CrossRef]

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

T. Søndergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

1999

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

1998

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Chow, E.

Chutinan, A.

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Dridi, K. H.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Engeness, T.

Fan, S.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Fink, Y.

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Haus, H. A.

Hietala, V.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

Ibanescu, M.

Jacobs, S. A.

Joannopoulos, J. D.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, “Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap,” Opt. Lett. 27, 1785–1787 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8–3-173.
[CrossRef] [PubMed]

E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotycally single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-9–13–748.
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

John, S.

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, “Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap,” Opt. Lett. 27, 1785–1787 (2002).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8–3-173.
[CrossRef] [PubMed]

E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelengths,” Opt. Lett. 26, 286–288 (2001).
[CrossRef]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotycally single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001), http://www.opticsexpress.org/abstract. cfm?URI=OPEX-9–13–748.
[CrossRef] [PubMed]

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Lin, S. Y.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[CrossRef] [PubMed]

Luo, C.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002).
[CrossRef]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Skorobogatiy, M.

Soljacic, M.

Søndergaard, T.

T. Søndergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Toader, O.

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Watts, M. R.

Weisberg, O.

Wendt, J. R.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys. Lett. 81, 2352–2354 (2002).
[CrossRef]

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000).
[CrossRef]

Nature

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. Søndergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Science

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Z. Jakšić, O. Jakšić, Z. Djurić, P. Krstajić, Ž. Lazić, D. Tanasković, and M. Popović, “Simple quasi-3D photonic crystal planar optical waveguides,” in Proceedings of the Fifth International Conference on Telecommunications in Modern Satellite Cable and Broadcasting Service (TELSIKS 2001)(Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), Vol. 2, pp. 389–392.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Multilayer stack of 2D PCs (MS2DPC1) made from a 1D dielectric multilayer stack in the direction. The stack consists of alternating planar layers of materials A and B, respectively, in which a 2D crystal lattice of cylindrical holes is etched that these might be filled with material C.

Fig. 2
Fig. 2

2D view of the MS2DPC1 structure under investigation in the absence of defects. In the xy plane the vectors a1=2π[(3/2)xˆ-½yˆ] and a2=2π[(3/2)xˆ+½yˆ] define the 2D lattice of air holes, while Λ1=3Λ and Λ2=Λ.

Fig. 3
Fig. 3

2D view of the supercell with a yz-plane defect in the MS2DPC1 structure under investigation. This Dyz defect is created by introduction of a layer of material with refractive index nD into a region determined by |x|WD/2 in the multilayer stack before the lattice of holes is etched in the structure, where WD is the width of the layer (all holes have the same radius).

Fig. 4
Fig. 4

Band diagrams for propagation (a) along the y axis only, (b) with some oblique axis in the yz plane along (b2+b3), and (c) along the z axis only for a Dyz defect with rD=0.5Λ.

Fig. 5
Fig. 5

Band diagram for propagation along the y axis only for a Dyz defect with rD=0.45Λ.

Fig. 6
Fig. 6

2D view in a plane parallel to the xy plane of the Ez field and the in-plane energy flow of a traveling mode and a trapped mode. Vortices appear in the pattern of energy flow (Poynting vector) for the trapped mode in the bandgap that has small group velocity.

Fig. 7
Fig. 7

Band diagram for propagation along the y axis only for a Dyz defect with nD=1.46 and W=WD=1.2Λ. The darker-gray region is a region with all kinds of polarization states; the lighter-gray region is the bandgap for P1 states propagating along the y axis. For simplicity, small pseudogaps for P1 states or P2 states are not shown. The upper solid white line is the upper limit of the regions of omnidirectional reflection relative to air and SiO2 for P1 states. The lower dotted and solid white lines are the lower limits of the region of omnidirectional reflection for P1 states relative to SiO2 and air, respectively. Filled squares joined by a solid curve, a dashed curve, and a dotted curve represent localized P1 modes with ECWD70%, 50%ECWD70%, and 30%ECWD50%, respectively; while squares that are not joined by curves represent those with ECWD30%. Filled squares, P1 defect modes with relatively high energy localization; crosses, strongly localized P2 states with ECWD30%. In the lighter-gray region many nonlocalized P2 states are present. All localized P1 defect modes near the main gap are shown.

Fig. 8
Fig. 8

Band diagram for propagation along the x axis only for a Dxz defect with nD=1.46 for three waveguide widths: WD=0.8Λ (dotted curves), WD=1.0Λ (dashed curves), and WD=1.2Λ (solid curves). Localized P1 modes are represented by square symbols (50%ECWD70%), diamond symbols (30%ECWD50%), and downward-pointing triangles (ECWD30%).

Fig. 9
Fig. 9

2D view of the supercell with a yz-plane defect in the MS2DPC1a structure under investigation. This defect is created by introduction of a layer of material with refractive index nD in a region determined by |x-3Λ/4|WD/2 in the multilayer stack before the lattice of holes is etched in the structure. Inversion symmetry is broken because of misalignment.

Fig. 10
Fig. 10

Band diagram for propagation along the y axis only for the P1 modes of a Dyz defect with nD=1.46 and WD=1.2Λ for a structure with a symmetry break with the defect restricted to |x-3Λ/4|WD/2 (filled downward-pointing triangles) and for a structure without a symmetry break with the defect restricted to |x|WD/2 (filled squares). Localized P1 states are represented by symbols joined by a solid curve (ECWD70%), a dashed curve (50%ECWD70%), and a dotted curve (30%ECWD50%). Symbols that are not joined by curves represent states with ECWD30%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fEz=|D·zˆ|2dr|D|2dr
ECW=12VD·DdvD|D+VH·HdvH|H,
vgc=kωc,
Dcλ=-ω2kω2.

Metrics