Abstract

A magneto-optical trap with feedback-controlled loading and loss rates is used to realize a deterministic source of single chromium atoms with single-atom occupation probability as high as 0.987±0.001. We present a series of measurements of the performance of this source and discuss the dependence of the probability of not having a single atom in the trap (error rate) on experimental parameters. We describe a simple analytical model that considers mean load rate, trap lifetime, stray load rate, and feedback response time, and we also present results of Monte Carlo calculations that take into account all experimental conditions. We find that the analytical model describes the behavior well for error rates as small as about 0.03, but the Monte Carlo simulations must be used to model behavior at error rates lower than this, as the occupation probability approaches unity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Hill and J. J. McClelland, “Atoms on demand: Fast, deterministic production of single Cr atoms,” Appl. Phys. Lett. 82, 3128–3130 (2003).
    [CrossRef]
  2. Z. Hu and H. J. Kimble, “Observation of a single atom in a magneto-optical trap,” Opt. Lett. 19, 1888–1890 (1994).
    [CrossRef] [PubMed]
  3. F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
    [CrossRef]
  4. D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
    [CrossRef]
  5. D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
    [CrossRef] [PubMed]
  6. S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
    [CrossRef] [PubMed]
  7. D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
    [CrossRef]
  8. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-Poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1027 (2001).
    [CrossRef]
  9. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
    [CrossRef] [PubMed]
  10. Unless otherwise stated, all ± uncertainties cited in this paper are intended to be interpreted as one-standard-deviation combined random and systematic uncertainties.
  11. J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).
  12. A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
    [CrossRef]
  13. C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407–1–053407–6 (2000).
    [CrossRef]
  14. B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye-lasers,” Rev. Sci. Instrum. 62, 1656–1657 (1991).
    [CrossRef]
  15. G. A. Martin, J. R. Fuhr, and W. L. Wiese, “Atomic transition probabilities, scandium through manganese,” J. Phys. Chem. Ref. Data 17, suppl. 3 (1988).
  16. J. J. McClelland and M. H. Kelley, “Detailed look at aspects of optical pumping in sodium,” Phys. Rev. A 31, 3704–3710 (1985).
    [CrossRef] [PubMed]
  17. W. Jitschin, “Locking the laser frequency to an atomic transition,” Appl. Phys. B 33, 7–8 (1984).
    [CrossRef]
  18. In fact, three slightly different load thresholds (1000 s−1, 1020 s−1 and 1142 s−1) and four slightly different dump thresholds (7000 s−1, 7200 s−1, 7220 s−1 and 7670 s−1) were used for the various runs reported here; however, variation in the performance over these values was observed to be negligible.

2003 (2)

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

S. B. Hill and J. J. McClelland, “Atoms on demand: Fast, deterministic production of single Cr atoms,” Appl. Phys. Lett. 82, 3128–3130 (2003).
[CrossRef]

2001 (3)

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-Poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1027 (2001).
[CrossRef]

2000 (2)

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407–1–053407–6 (2000).
[CrossRef]

1999 (1)

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

1996 (2)

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

1994 (1)

1991 (1)

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye-lasers,” Rev. Sci. Instrum. 62, 1656–1657 (1991).
[CrossRef]

1988 (1)

G. A. Martin, J. R. Fuhr, and W. L. Wiese, “Atomic transition probabilities, scandium through manganese,” J. Phys. Chem. Ref. Data 17, suppl. 3 (1988).

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

1985 (1)

J. J. McClelland and M. H. Kelley, “Detailed look at aspects of optical pumping in sodium,” Phys. Rev. A 31, 3704–3710 (1985).
[CrossRef] [PubMed]

1984 (1)

W. Jitschin, “Locking the laser frequency to an atomic transition,” Appl. Phys. B 33, 7–8 (1984).
[CrossRef]

Alt, W.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Anderson, W. R.

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407–1–053407–6 (2000).
[CrossRef]

Bell, A. S.

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Bettermann, D.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Bradley, C. C.

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407–1–053407–6 (2000).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Celotta, R. J.

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407–1–053407–6 (2000).
[CrossRef]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Dunning, F. B.

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye-lasers,” Rev. Sci. Instrum. 62, 1656–1657 (1991).
[CrossRef]

Ertmer, W.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Frese, D.

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Fuhr, J. R.

G. A. Martin, J. R. Fuhr, and W. L. Wiese, “Atomic transition probabilities, scandium through manganese,” J. Phys. Chem. Ref. Data 17, suppl. 3 (1988).

Gomer, V.

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Grangier, P.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-Poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1027 (2001).
[CrossRef]

Haubrich, D.

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

Hensler, S.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Hill, S. B.

S. B. Hill and J. J. McClelland, “Atoms on demand: Fast, deterministic production of single Cr atoms,” Appl. Phys. Lett. 82, 3128–3130 (2003).
[CrossRef]

Hu, Z.

Jitschin, W.

W. Jitschin, “Locking the laser frequency to an atomic transition,” Appl. Phys. B 33, 7–8 (1984).
[CrossRef]

Kelley, M. H.

J. J. McClelland and M. H. Kelley, “Detailed look at aspects of optical pumping in sodium,” Phys. Rev. A 31, 3704–3710 (1985).
[CrossRef] [PubMed]

Kimble, H. J.

Kuhr, S.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Lindsay, B. G.

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye-lasers,” Rev. Sci. Instrum. 62, 1656–1657 (1991).
[CrossRef]

Locher, S.

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Martin, G. A.

G. A. Martin, J. R. Fuhr, and W. L. Wiese, “Atomic transition probabilities, scandium through manganese,” J. Phys. Chem. Ref. Data 17, suppl. 3 (1988).

McClelland, J. J.

S. B. Hill and J. J. McClelland, “Atoms on demand: Fast, deterministic production of single Cr atoms,” Appl. Phys. Lett. 82, 3128–3130 (2003).
[CrossRef]

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407–1–053407–6 (2000).
[CrossRef]

J. J. McClelland and M. H. Kelley, “Detailed look at aspects of optical pumping in sodium,” Phys. Rev. A 31, 3704–3710 (1985).
[CrossRef] [PubMed]

Meschede, D.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

Mlynek, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Muller, M.

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

Müller, M.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

Peng, J. L.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Pfau, T.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Protsenko, I.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-Poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1027 (2001).
[CrossRef]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Reymond, G.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-Poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1027 (2001).
[CrossRef]

Ruschewitz, F.

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Schadwinkel, H.

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

Schlosser, N.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-Poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1027 (2001).
[CrossRef]

Schmidt, P. O.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

Schrader, D.

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Smith, K. A.

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye-lasers,” Rev. Sci. Instrum. 62, 1656–1657 (1991).
[CrossRef]

Strauch, F.

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

Stuhler, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

Ueberholz, B.

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

Werner, J.

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

Wiese, W. L.

G. A. Martin, J. R. Fuhr, and W. L. Wiese, “Atomic transition probabilities, scandium through manganese,” J. Phys. Chem. Ref. Data 17, suppl. 3 (1988).

Wynands, R.

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

Appl. Phys. B (2)

D. Schrader, S. Kuhr, W. Alt, M. Muller, V. Gomer, and D. Meschede, “An optical conveyor belt for single neutral atoms,” Appl. Phys. B 73, 819–824 (2001).
[CrossRef]

W. Jitschin, “Locking the laser frequency to an atomic transition,” Appl. Phys. B 33, 7–8 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

S. B. Hill and J. J. McClelland, “Atoms on demand: Fast, deterministic production of single Cr atoms,” Appl. Phys. Lett. 82, 3128–3130 (2003).
[CrossRef]

Europhys. Lett. (3)

A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, “A magneto-optical trap for chromium with population repumping via intercombination lines,” Europhys. Lett. 45, 156–161 (1999).
[CrossRef]

F. Ruschewitz, D. Bettermann, J. L. Peng, and W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, R. Wynands, and D. Meschede, “Observation of individual neutral atoms in magnetic and magneto-optical traps,” Europhys. Lett. 34, 663–668 (1996).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

G. A. Martin, J. R. Fuhr, and W. L. Wiese, “Atomic transition probabilities, scandium through manganese,” J. Phys. Chem. Ref. Data 17, suppl. 3 (1988).

Nature (London) (1)

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-Poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1027 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

J. J. McClelland and M. H. Kelley, “Detailed look at aspects of optical pumping in sodium,” Phys. Rev. A 31, 3704–3710 (1985).
[CrossRef] [PubMed]

C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, “Magneto-optical trapping of chromium atoms,” Phys. Rev. A 61, 053407–1–053407–6 (2000).
[CrossRef]

J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, “Continuous loading of a magnetic trap,” Phys. Rev. A 64, 031405–1–031405–4 (2003).

Phys. Rev. Lett. (2)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Control of long-term output frequency drift in commercial dye-lasers,” Rev. Sci. Instrum. 62, 1656–1657 (1991).
[CrossRef]

Science (1)

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001).
[CrossRef] [PubMed]

Other (2)

Unless otherwise stated, all ± uncertainties cited in this paper are intended to be interpreted as one-standard-deviation combined random and systematic uncertainties.

In fact, three slightly different load thresholds (1000 s−1, 1020 s−1 and 1142 s−1) and four slightly different dump thresholds (7000 s−1, 7200 s−1, 7220 s−1 and 7670 s−1) were used for the various runs reported here; however, variation in the performance over these values was observed to be negligible.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy levels of Cr showing the laser transitions used to control loading and trap the atoms (vertical distances not to scale). (a) Atoms are collimated, deflected and transferred to the metastable  5S2 level with a pump laser tuned to the  7S3 7P3° transition at 427.6 nm. (b) When loading is desired, atoms are repumped to the ground state with a load laser tuned to the  5S27P3° transition at 633.2 nm. (c) Atoms are trapped with a laser tuned to the  7S37P4° transition at 425.6 nm and repumped by two lasers tuned to the  5D37P4° and  5D4 7P4° transitions at 649.2 nm and 658.3 nm, respectively.

Fig. 2
Fig. 2

Schematic of the experiment. Cr atoms produced in an evaporator are collimated, deflected and transferred to the metastable  5S2 level with a pump laser. A load laser, switched by an acousto-optic modulator AOM repumps atoms to the ground state for loading. Fluorescence from the MOT is collected by a photomultiplier PMT, the output of which is averaged in a rate meter and fed into a comparator. A load signal controls the load laser AOM, and a dump signal controls either (1) the detuning of the MOT laser or (2) a Pockels cell PC on one of the MOT beams.

Fig. 3
Fig. 3

Error rate P0, or probability of not having a single atom in the MOT, as a function of λ=RloadτMOT, the product of the load rate and the MOT lifetime. The filled circles indicate measurements with the symbol size and gray level proportional to τMOT, which ranges from 0.9 to 5.2 s. The light solid curve represents the perfect feedback model of Eq. (3), the dark solid curve represents the analytical model of Eq. (7), and the dashed curve shows the behavior with no feedback. Error bars indicate one-standard-deviation uncertainties as discussed in the text.

Fig. 4
Fig. 4

Error rate P0, or probability of not having a single atom in the MOT, plotted as a function of run number. The circles indicate the same measurements as those shown in Fig. (3) with λ>100. Error bars indicate one-standard-deviation uncertainties for these measurements, as discussed in the text. The gray bars indicate Monte Carlo calculations, for which the height of the bar corresponds to plus and minus one-standard deviation of 10 simulations in each case. The experimental parameters corresponding to the indicated run numbers are shown in Table 1.

Tables (1)

Tables Icon

Table 1 Run Parameters for Data Presented in Fig. 4

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dP0dt=-T01P0+T10P1,
P0=T10T10+T01.
P0=11+λ perfectfeedback,
P0=1-λ exp(-λ)nofeedback.
T10=τMOT-1+Rstray(RstrayRload).
T01Rload exp(-Rloadτresp).
P0=1+RstrayτMOT1+RstrayτMOT+λ exp(-Rloadτresp).
P0opt=1+RstrayτMOT1+RstrayτMOT+τMOTτresp-1e-1.
limτMOT P0opt=eRstrayτresp1+eRstrayτresp.

Metrics