Abstract

The 530–880-nm continuum pulse with a greatly asymmetric temporal profile over 500 fs and a spectral phase variation over 150 rad, which was generated by induced phase modulation (IPM) as well as self-phase modulation in a conventional fused-silica fiber, was compressed to 7.8 fs by a feedback technique. Fundamental (a center wavelength of 800 nm, a duration of 80 fs, a pulse energy of 64 nJ) and signal pulses (a center wavelength of 670 nm, a duration of 80 fs, a pulse energy of 65 nJ) produced by one common femtosecond source with an optical parametric amplifier were copropagated in the fiber under an optimum delay time between the two pulses. The computer-controlled feedback system that combines a 4-f phase compensator with a spatial light modulator and a modified spectral phase interferometry for a direct electric-field reconstruction, automatically compensated for not only the conventional nonlinear chirp (group-delay dispersion and its higher-order dispersion) but also the frequency-independent group-delay (first-order phase dispersion), both of which are essential for pulse compression by use of the IPM effect.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamashita, H. Sone, and R. Morita, “Proposal for generation of a coherent pulse ultra-broadened from near-infrared to near-ultraviolet and its monocyclization,” Jpn. J. Appl. Phys. 35, L1194–L1197 (1996).
    [CrossRef]
  2. M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, “Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,” IEEE J. Quantum Electron. 34, 2145–2149 (1998).
    [CrossRef]
  3. N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, “Theory of ultrabroadband optical pulse generation by induced-phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B 16, 662–668 (1999).
    [CrossRef]
  4. A. M. Weiner, D. F. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef] [PubMed]
  5. L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
    [CrossRef]
  6. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
    [CrossRef]
  7. N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,” Opt. Lett. 25, 183–185 (2000).
    [CrossRef]
  8. M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
    [CrossRef]
  9. L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
    [CrossRef]
  10. L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
    [CrossRef]
  11. N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
    [CrossRef]
  12. K. Yamane, N. Karasawa, S. Kusaka, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “A study on novel spectral behaviors of ultrabroad-band optical pulses generated by induced-phase modulation in a gas-filled hollow fiber using a modified SPIDER technique,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 457–458.
  13. K. Yamane, Z. Zhang, A. Suguro, R. Morita, and M. Yamashita, “Characterization of 3.4-fs optical pulses generated in the monocycle region,” Postdeadline Papers Book of CLEO/QELS 2003, CThPDA2.1–3 (Optical Society of America, Washington, D.C., 2003).
  14. M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
    [CrossRef]
  15. M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
    [CrossRef]
  16. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
    [CrossRef]
  17. The excellent agreement between the M-SPIDER measurement for a few hundred seconds and the autocorrelation measurement has been confirmed very recently for our pulse-compression experiment of photonic crystal fibers.

2003 (1)

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

2002 (2)

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

2001 (2)

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
[CrossRef]

2000 (3)

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,” Opt. Lett. 25, 183–185 (2000).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
[CrossRef]

L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
[CrossRef]

1999 (3)

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, “Theory of ultrabroadband optical pulse generation by induced-phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B 16, 662–668 (1999).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

1998 (1)

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, “Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,” IEEE J. Quantum Electron. 34, 2145–2149 (1998).
[CrossRef]

1996 (1)

M. Yamashita, H. Sone, and R. Morita, “Proposal for generation of a coherent pulse ultra-broadened from near-infrared to near-ultraviolet and its monocyclization,” Jpn. J. Appl. Phys. 35, L1194–L1197 (1996).
[CrossRef]

1990 (1)

Adachi, M.

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

Hirasawa, M.

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

Karasawa, N.

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,” Opt. Lett. 25, 183–185 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, “Theory of ultrabroadband optical pulse generation by induced-phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B 16, 662–668 (1999).
[CrossRef]

Kobayashi, S.

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

Leaird, D. F.

Li, L.

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
[CrossRef]

L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
[CrossRef]

Morita, R.

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,” Opt. Lett. 25, 183–185 (2000).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
[CrossRef]

L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, “Theory of ultrabroadband optical pulse generation by induced-phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B 16, 662–668 (1999).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, “Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,” IEEE J. Quantum Electron. 34, 2145–2149 (1998).
[CrossRef]

M. Yamashita, H. Sone, and R. Morita, “Proposal for generation of a coherent pulse ultra-broadened from near-infrared to near-ultraviolet and its monocyclization,” Jpn. J. Appl. Phys. 35, L1194–L1197 (1996).
[CrossRef]

Nakagawa, N.

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

Nakamura, S.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Patel, J. S.

Shibata, M.

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

Shigekawa, H.

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,” Opt. Lett. 25, 183–185 (2000).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, “Theory of ultrabroadband optical pulse generation by induced-phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B 16, 662–668 (1999).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, “Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,” IEEE J. Quantum Electron. 34, 2145–2149 (1998).
[CrossRef]

Sone, H.

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, “Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,” IEEE J. Quantum Electron. 34, 2145–2149 (1998).
[CrossRef]

M. Yamashita, H. Sone, and R. Morita, “Proposal for generation of a coherent pulse ultra-broadened from near-infrared to near-ultraviolet and its monocyclization,” Jpn. J. Appl. Phys. 35, L1194–L1197 (1996).
[CrossRef]

Suguro, A.

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

Weiner, A. M.

Wullert, J. R.

Xu, L.

L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, “Theory of ultrabroadband optical pulse generation by induced-phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B 16, 662–668 (1999).
[CrossRef]

Yamamoto, K.

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

Yamashita, M.

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B 18, 1742–1746 (2001).
[CrossRef]

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide,” Opt. Lett. 25, 183–185 (2000).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
[CrossRef]

L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
[CrossRef]

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

N. Karasawa, R. Morita, L. Xu, H. Shigekawa, and M. Yamashita, “Theory of ultrabroadband optical pulse generation by induced-phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B 16, 662–668 (1999).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, “Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,” IEEE J. Quantum Electron. 34, 2145–2149 (1998).
[CrossRef]

M. Yamashita, H. Sone, and R. Morita, “Proposal for generation of a coherent pulse ultra-broadened from near-infrared to near-ultraviolet and its monocyclization,” Jpn. J. Appl. Phys. 35, L1194–L1197 (1996).
[CrossRef]

Appl. Phys. B (2)

M. Shibata, M. Hirasawa, N. Nakagawa, R. Morita, A. Suguro, H. Shigekawa, and M. Yamashita, “Experimental demonstration of phase-dispersion compensation for ultra-broadband femtosecond optical pulses generated by induced-phase modulation,” Appl. Phys. B 74, S291–S294 (2002).
[CrossRef]

M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

IEEE J. Quantum Electron. (4)

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36, 893–899 (2000).
[CrossRef]

M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, “Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking,” IEEE J. Quantum Electron. 34, 2145–2149 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

L. Xu, L. Li, N. Nakagawa, R. Morita, and M. Yamashita, “Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,” IEEE Photonics Technol. Lett. 12, 1540–1542 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

M. Yamashita, H. Sone, and R. Morita, “Proposal for generation of a coherent pulse ultra-broadened from near-infrared to near-ultraviolet and its monocyclization,” Jpn. J. Appl. Phys. 35, L1194–L1197 (1996).
[CrossRef]

M. Adachi, M. Hirasawa, A. Suguro, N. Karasawa, S. Kobayashi, R. Morita, and M. Yamashita, “Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber,” Jpn. J. Appl. Phys. 42, L24–L26 (2003).
[CrossRef]

Opt. Commun. (1)

L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber,” Opt. Commun. 162, 256–260 (1999).
[CrossRef]

Opt. Lett. (2)

Other (3)

The excellent agreement between the M-SPIDER measurement for a few hundred seconds and the autocorrelation measurement has been confirmed very recently for our pulse-compression experiment of photonic crystal fibers.

K. Yamane, N. Karasawa, S. Kusaka, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “A study on novel spectral behaviors of ultrabroad-band optical pulses generated by induced-phase modulation in a gas-filled hollow fiber using a modified SPIDER technique,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 457–458.

K. Yamane, Z. Zhang, A. Suguro, R. Morita, and M. Yamashita, “Characterization of 3.4-fs optical pulses generated in the monocycle region,” Postdeadline Papers Book of CLEO/QELS 2003, CThPDA2.1–3 (Optical Society of America, Washington, D.C., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for adaptive compression of induced phase-modulated pulses. (a) Optical source for fiber input of 80-fs fundamental and signal pulses. (b) A fused-silica fiber (OF) for continuum generation by use of IPM (DS, delay stage; R1, R2, reflective objectives). (c) 4-f phase compensator with a feedback-controlled SLM. (d) Real-time operation, modified SPIDER apparatus.14

Fig. 2
Fig. 2

M-SPIDER measurement in the SLM off case and applied spectral phase: (a) pulse spectrum; (b), (b) SPIDER signal; (c), (c), (d), (e) reconstructed spectral phase (dashed curve), spectral group delay (dotted curve), temporal intensity (solid curve), and temporal phase (dashed curve), respectively; (f), (f) spectral phase applied by SLM after feedback operation (dashed curve) and its folded phase (solid curve), respectively.

Fig. 3
Fig. 3

M-SPIDER measurement in the SLM on case: (a) pulse spectrum; (b), (b) SPIDER signal; (c), (c), (d), (e) reconstructed spectral phase (dashed curve); enlarged spectral phase (dotted curve), temporal intensity (solid curve), and temporal phase (dashed curve), respectively; (f) calculated transform-limited pulse profile (solid curve); (g) fiber-output pulse before compensation (dotted curve).

Metrics