Abstract

Wavelengths of seven spectral lines of Fe I, Ge I, and Pt I between 1932 Å and 1938 Å have been measured with uncertainties of less than 1×10-4 Å (5 parts in 108) with Fourier-transform spectroscopy. These lines provide accurate standards for wavelength calibration of ArF excimer lasers operating at 193 nm. Previously reported wavelengths of Fe I, Cu II, and Ge I were evaluated for calibration of the absolute wavelength scale. Calibrations based on Fe I and Ge I were found to differ systematically by several parts in 108. A calibration based on Cu II was internally inconsistent at a level of 2 parts in 107 and was not used. Improved wavelengths for an additional 147 lines of Pt I and Pt II and 161 lines of Kr II in the region 1636 Å to 3151 Å are also reported.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “The NIST FT700 vacuum ultraviolet Fourier transform spectrometer,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
    [CrossRef]
  2. The identification of commercial products in this paper does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the items identified are necessarily the best available for the purpose.
  3. K. Danzmann, M. Günther, J. Fisher, M. Kock, and M. Kühne, “High current hollow cathode as a radiometric transfer standard source for the extreme ultraviolet,” Appl. Opt. 27, 4947–4951 (1988).
    [CrossRef] [PubMed]
  4. G. Nave, C. J. Sansonetti, and U. Griesmann, “Progress on the NIST IR-vis-UV Fourier transform spectrometer,” in Fourier Transform Spectroscopy: Methods and Applications, Vol. 3 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 38–40.
  5. B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
    [CrossRef]
  6. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, New York, 2001), Chap. 9.
  7. G. Nave, R. C. M. Learner, A. P. Thorne, and C. J. Harris, “Precision Fe I and Fe II wavelengths in the ultraviolet spectrum of the iron-neon hollow-cathode lamp,” J. Opt. Soc. Am. B 8, 2028–2041 (1991).
    [CrossRef]
  8. G. Norlén, “Wavelengths and energy levels of Ar I and Ar II based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–268 (1973).
    [CrossRef]
  9. W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
    [CrossRef]
  10. V. Kaufman and K. L. Andrew, “Germanium vacuum ultraviolet Ritz standards,” J. Opt. Soc. Am. 52, 1223–1237 (1962).
    [CrossRef]
  11. G. V. Deverall, K. W. Meissner, and G. J. Zissis, “Precision wavelength and isotopic shift measurements of germanium arc lines,” Phys. Rev. 95, 1463–1468 (1954).
    [CrossRef]
  12. R. D. VanVeld and K. W. Meissner, “Interferometric wavelength measurements of germanium lines of a hollow cathode discharge,” J. Opt. Soc. Am. 46, 598–604 (1956).
    [CrossRef]
  13. B. Edlén, “The dispersion of standard air,” J. Opt. Soc. Am. 43, 339–344 (1953).
    [CrossRef]
  14. C. B. Ross, “Wavelengths and energy levels of singly ionized copper, Cu II,” Los Alamos Scientific Laboratory Rep. 4498 (National Technical Information Service, Springfield, Va., 1970).
  15. R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier-transform emission spectra with applications to Fe I,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
    [CrossRef]
  16. G. Nave, S. Johansson, and A. P. Thorne, “Precision vacuum-ultraviolet wavelengths of Fe II measured by Fourier-transform and grating spectrometry,” J. Opt. Soc. Am. B 14, 1035–1042 (1997).
    [CrossRef]
  17. G. Nave, R. C. M. Learner, J. E. Murray, A. P. Thorne, and J. W. Brault, “Precision Fe I and Fe II wavelengths in the red and infrared spectrum of the iron-neon hollow cathode lamp,” J. Phys. (France) 2, 913–929 (1992).
    [CrossRef]
  18. J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130–4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
    [CrossRef]
  19. R. Engleman, Jr., “Accurate energy levels for neutral platinum,” J. Opt. Soc. Am. B 2, 1934–1941 (1985).
    [CrossRef]
  20. L. Minnhagen, H. Strihed, and B. Petersson, “Revised and extended analysis of singly ionized krypton, Kr II,” Ark. Fys. 39, 471–493 (1969).

1999

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “The NIST FT700 vacuum ultraviolet Fourier transform spectrometer,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
[CrossRef]

1997

1995

W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
[CrossRef]

1992

G. Nave, R. C. M. Learner, J. E. Murray, A. P. Thorne, and J. W. Brault, “Precision Fe I and Fe II wavelengths in the red and infrared spectrum of the iron-neon hollow cathode lamp,” J. Phys. (France) 2, 913–929 (1992).
[CrossRef]

J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130–4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

1991

1988

1985

1973

G. Norlén, “Wavelengths and energy levels of Ar I and Ar II based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–268 (1973).
[CrossRef]

1969

L. Minnhagen, H. Strihed, and B. Petersson, “Revised and extended analysis of singly ionized krypton, Kr II,” Ark. Fys. 39, 471–493 (1969).

1966

B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

1962

1956

1954

G. V. Deverall, K. W. Meissner, and G. J. Zissis, “Precision wavelength and isotopic shift measurements of germanium arc lines,” Phys. Rev. 95, 1463–1468 (1954).
[CrossRef]

1953

Acquista, N.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130–4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Anderson, W. H. C.

W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
[CrossRef]

Andrew, K. L.

Bratasz, L.

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “The NIST FT700 vacuum ultraviolet Fourier transform spectrometer,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
[CrossRef]

Brault, J. W.

W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
[CrossRef]

G. Nave, R. C. M. Learner, J. E. Murray, A. P. Thorne, and J. W. Brault, “Precision Fe I and Fe II wavelengths in the red and infrared spectrum of the iron-neon hollow cathode lamp,” J. Phys. (France) 2, 913–929 (1992).
[CrossRef]

Burnett, J. H.

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “The NIST FT700 vacuum ultraviolet Fourier transform spectrometer,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
[CrossRef]

Carle, M. T.

W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
[CrossRef]

Danzmann, K.

Deverall, G. V.

G. V. Deverall, K. W. Meissner, and G. J. Zissis, “Precision wavelength and isotopic shift measurements of germanium arc lines,” Phys. Rev. 95, 1463–1468 (1954).
[CrossRef]

Edlén, B.

B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

B. Edlén, “The dispersion of standard air,” J. Opt. Soc. Am. 43, 339–344 (1953).
[CrossRef]

Engleman Jr., R.

Fisher, J.

Griesmann, U.

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “The NIST FT700 vacuum ultraviolet Fourier transform spectrometer,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
[CrossRef]

Günther, M.

Harris, C. J.

Johansson, S.

Kaufman, V.

Kling, R.

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “The NIST FT700 vacuum ultraviolet Fourier transform spectrometer,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
[CrossRef]

Kock, M.

Kühne, M.

Learner, R. C. M.

Meissner, K. W.

R. D. VanVeld and K. W. Meissner, “Interferometric wavelength measurements of germanium lines of a hollow cathode discharge,” J. Opt. Soc. Am. 46, 598–604 (1956).
[CrossRef]

G. V. Deverall, K. W. Meissner, and G. J. Zissis, “Precision wavelength and isotopic shift measurements of germanium arc lines,” Phys. Rev. 95, 1463–1468 (1954).
[CrossRef]

Minnhagen, L.

L. Minnhagen, H. Strihed, and B. Petersson, “Revised and extended analysis of singly ionized krypton, Kr II,” Ark. Fys. 39, 471–493 (1969).

Murray, J. E.

G. Nave, R. C. M. Learner, J. E. Murray, A. P. Thorne, and J. W. Brault, “Precision Fe I and Fe II wavelengths in the red and infrared spectrum of the iron-neon hollow cathode lamp,” J. Phys. (France) 2, 913–929 (1992).
[CrossRef]

Nave, G.

Norlén, G.

G. Norlén, “Wavelengths and energy levels of Ar I and Ar II based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–268 (1973).
[CrossRef]

Petersson, B.

L. Minnhagen, H. Strihed, and B. Petersson, “Revised and extended analysis of singly ionized krypton, Kr II,” Ark. Fys. 39, 471–493 (1969).

Reader, J.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130–4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Sansonetti, C. J.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130–4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Sansonetti, J. E.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130–4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Strihed, H.

L. Minnhagen, H. Strihed, and B. Petersson, “Revised and extended analysis of singly ionized krypton, Kr II,” Ark. Fys. 39, 471–493 (1969).

Thorne, A. P.

VanVeld, R. D.

Whaling, W.

W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
[CrossRef]

Zarem, H. A.

W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
[CrossRef]

Zissis, G. J.

G. V. Deverall, K. W. Meissner, and G. J. Zissis, “Precision wavelength and isotopic shift measurements of germanium arc lines,” Phys. Rev. 95, 1463–1468 (1954).
[CrossRef]

Appl. Opt.

Ark. Fys.

L. Minnhagen, H. Strihed, and B. Petersson, “Revised and extended analysis of singly ionized krypton, Kr II,” Ark. Fys. 39, 471–493 (1969).

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. (France)

G. Nave, R. C. M. Learner, J. E. Murray, A. P. Thorne, and J. W. Brault, “Precision Fe I and Fe II wavelengths in the red and infrared spectrum of the iron-neon hollow cathode lamp,” J. Phys. (France) 2, 913–929 (1992).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

W. Whaling, W. H. C. Anderson, M. T. Carle, J. W. Brault, and H. A. Zarem, “Argon ion linelist and level energies in the hollow-cathode discharge,” J. Quant. Spectrosc. Radiat. Transf. 53, 1–22 (1995).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130–4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Metrologia

B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Phys. Rev.

G. V. Deverall, K. W. Meissner, and G. J. Zissis, “Precision wavelength and isotopic shift measurements of germanium arc lines,” Phys. Rev. 95, 1463–1468 (1954).
[CrossRef]

Phys. Scr.

G. Norlén, “Wavelengths and energy levels of Ar I and Ar II based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–268 (1973).
[CrossRef]

Proc. SPIE

U. Griesmann, R. Kling, J. H. Burnett, and L. Bratasz, “The NIST FT700 vacuum ultraviolet Fourier transform spectrometer,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds., Proc. SPIE 3818, 180–188 (1999).
[CrossRef]

Other

The identification of commercial products in this paper does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the items identified are necessarily the best available for the purpose.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, New York, 2001), Chap. 9.

G. Nave, C. J. Sansonetti, and U. Griesmann, “Progress on the NIST IR-vis-UV Fourier transform spectrometer,” in Fourier Transform Spectroscopy: Methods and Applications, Vol. 3 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 38–40.

C. B. Ross, “Wavelengths and energy levels of singly ionized copper, Cu II,” Los Alamos Scientific Laboratory Rep. 4498 (National Technical Information Service, Springfield, Va., 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectrum of a hollow-cathode lamp with a solid-iron cathode containing a foil of platinum and chips of germanium. The buffer gas was 260 Pa (2 Torr) of neon, and the current was 900 mA.

Fig. 2
Fig. 2

Region around 1935 Å from the same spectrum shown in Fig. 1.

Fig. 3
Fig. 3

Calibration of the spectrum of an iron hollow cathode containing a platinum foil and chips of germanium. The correction factor derived from Fe I and Fe II wavelengths is smaller than that derived from Ge I wavelengths by 6.5 parts in 108. The error bars represent the uncertainty in the uncorrected wave number at the one standard deviation level.

Fig. 4
Fig. 4

Calibration of the same spectrum shown in Fig. 3 with Fe I lines from a spectrum of an Fe/Ar hollow-cathode lamp that was calibrated directly from Whaling’s Ar II wave-number standards. The error bars represent the combined uncertainties in the uncorrected wave number and the uncertainty of the Fe I standard lines, at the one standard deviation level.

Fig. 5
Fig. 5

Calibration of the spectrum of a copper hollow cathode containing platinum and iron foils and chips of germanium. The Ge I lines give a well-defined correction factor, but the Cu II lines do not. The error bars represent the uncertainty in the uncorrected wave number at the one standard deviation level.

Fig. 6
Fig. 6

Calibration of the spectrum of a commercial Pt/Kr lamp with Pt lines measured in the four spectra of the demountable lamp. The relative vertical scale is the same as in Figs. 3 to 5. The error bars represent the combined uncertainties at the one standard deviation level of the corrected wave number in the demountable lamp and the uncorrected wave number in the Pt/Kr lamp.

Fig. 7
Fig. 7

Comparison of Pt wavelengths with the NIST platinum atlas.18 The error bars represent the uncertainties of the atlas wavelengths.

Tables (4)

Tables Icon

Table 1 Lamp Conditions and Wave-Number Correction Factors

Tables Icon

Table 2 Vacuum Wavelengths of Fe I, Ge I, and Pt I Lines Near 1935 Å

Tables Icon

Table 3 Wavelengths of Pt I and Pt II Lines from an Average of Up to 10 Spectra

Tables Icon

Table 4 Wavelengths of Kr II Lines

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σc=(1+keff)σu,

Metrics