Abstract

The isotope-ratio-enhancement calculations for  138La are carried out using spectral-simulation (SS) and density-matrix (DM) methods for the 5d6s2 2D3/2-5d6s6p4F3/20 (753.9-nm) transition that was considered by Young and Shaw [J. Opt. Soc. Am. B 12, 1398–1402 (1995)] a first-step transition in their diode-laser-initiated, resonance-ionization mass spectrometry experiments. The results from the two methods are compared with each other and with the reported experimental result. The SS result is noted to be more sensitive to the residual Doppler width but less sensitive to the laser linewidth than the DM result. It is further noted that under exact correspondence with experimental conditions, the DM result is in much better agreement with the experimental result obtained by Young and Shaw in their two-color resonant, three-photon photoionization of La by use of a narrowband, cw diode laser for the first-step excitation and a broadband, pulsed dye laser for further excitation and ionization.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
    [CrossRef]
  2. D. H. Smith, J. P. Young, and R. W. Shaw, “Elemental resonance ionization mass spectrometry: a review,” Mass Spectrom. Rev. 8, 345 (1989).
    [CrossRef]
  3. R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
    [CrossRef] [PubMed]
  4. J. P. Young and R. W. Shaw, “Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry,” J. Opt. Soc. Am. B 12, 1398–1402 (1995).
    [CrossRef]
  5. M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
    [CrossRef]
  6. A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Isotopic selectivity calculations for multistep photoionization of calcium atoms using narrowband lasers,” J. Phys. B 35, 3677–3688 (2002).
    [CrossRef]
  7. P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988).
  8. B. W. Shore, The Theory of Coherent Atomic Excitations (Wiley, New York, 1990).
  9. B. A. Bushaw, W. Nortershauser, and K. Wendt, “Line shapes and optical selectivity in high-resolution, double-resonance, ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
    [CrossRef]
  10. P. Zoller and P. Lambropoulos, “Laser temporal coherence effects in two-photon, resonant, three-photon ionization,” J. Phys. B 13, 69–83 (1980).
    [CrossRef]
  11. S. N. Dixit and P. Lambropoulos, “Theory of photoelectron angular distributions in resonant multiphoton ionization,” Phys. Rev. A 27, 861–874 (1983).
    [CrossRef]
  12. Bo-nian Dai and P. Lambropoulos, “Selective ionization: effects of power broadening, laser bandwidth, and interaction time on selectivity,” Phys. Rev. A 34, 3954–3961 (1986).
    [CrossRef] [PubMed]
  13. L. Radziemski, R. Solarz, and J. A. Paisner, Laser Spectroscopy and its Applications (Marcel Dekker, New York, 1987), p. 5.
  14. W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
    [CrossRef]
  15. C. H. Corliss and W. R. Bozman, “Experimental Transition Probabilities for Spectral Lines of Seventy Elements,” U.S. National Bureau of Standards Monograph No. 53 (U.S. Government Printing Office, Washington, D.C., 1962), p. 464.
  16. V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, New York, 1987), p. 80.

2002 (1)

A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Isotopic selectivity calculations for multistep photoionization of calcium atoms using narrowband lasers,” J. Phys. B 35, 3677–3688 (2002).
[CrossRef]

2001 (1)

W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
[CrossRef]

1999 (1)

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Line shapes and optical selectivity in high-resolution, double-resonance, ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

1997 (1)

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

1995 (1)

1990 (1)

R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

1989 (1)

D. H. Smith, J. P. Young, and R. W. Shaw, “Elemental resonance ionization mass spectrometry: a review,” Mass Spectrom. Rev. 8, 345 (1989).
[CrossRef]

1986 (1)

Bo-nian Dai and P. Lambropoulos, “Selective ionization: effects of power broadening, laser bandwidth, and interaction time on selectivity,” Phys. Rev. A 34, 3954–3961 (1986).
[CrossRef] [PubMed]

1983 (1)

S. N. Dixit and P. Lambropoulos, “Theory of photoelectron angular distributions in resonant multiphoton ionization,” Phys. Rev. A 27, 861–874 (1983).
[CrossRef]

1980 (1)

P. Zoller and P. Lambropoulos, “Laser temporal coherence effects in two-photon, resonant, three-photon ionization,” J. Phys. B 13, 69–83 (1980).
[CrossRef]

1979 (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Bonanno, A. S.

R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

Bushaw, B. A.

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Line shapes and optical selectivity in high-resolution, double-resonance, ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Dai, Bo-nian

Bo-nian Dai and P. Lambropoulos, “Selective ionization: effects of power broadening, laser bandwidth, and interaction time on selectivity,” Phys. Rev. A 34, 3954–3961 (1986).
[CrossRef] [PubMed]

Dale, J. M.

R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

Dixit, S. N.

S. N. Dixit and P. Lambropoulos, “Theory of photoelectron angular distributions in resonant multiphoton ionization,” Phys. Rev. A 27, 861–874 (1983).
[CrossRef]

Endo, T.

W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
[CrossRef]

Gupta, G. P.

A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Isotopic selectivity calculations for multistep photoionization of calcium atoms using narrowband lasers,” J. Phys. B 35, 3677–3688 (2002).
[CrossRef]

Hurst, G. S.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Jin, W. G.

W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
[CrossRef]

Katsuragawa, H.

W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
[CrossRef]

Kramer, S. D.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Lambropoulos, P.

Bo-nian Dai and P. Lambropoulos, “Selective ionization: effects of power broadening, laser bandwidth, and interaction time on selectivity,” Phys. Rev. A 34, 3954–3961 (1986).
[CrossRef] [PubMed]

S. N. Dixit and P. Lambropoulos, “Theory of photoelectron angular distributions in resonant multiphoton ionization,” Phys. Rev. A 27, 861–874 (1983).
[CrossRef]

P. Zoller and P. Lambropoulos, “Laser temporal coherence effects in two-photon, resonant, three-photon ionization,” J. Phys. B 13, 69–83 (1980).
[CrossRef]

Minowa, T.

W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
[CrossRef]

Nortershauser, W.

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Line shapes and optical selectivity in high-resolution, double-resonance, ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Payne, M. G.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Pulhani, A. K.

A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Isotopic selectivity calculations for multistep photoionization of calcium atoms using narrowband lasers,” J. Phys. B 35, 3677–3688 (2002).
[CrossRef]

Sankari, M.

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

Shaw, R. W.

J. P. Young and R. W. Shaw, “Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry,” J. Opt. Soc. Am. B 12, 1398–1402 (1995).
[CrossRef]

R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

D. H. Smith, J. P. Young, and R. W. Shaw, “Elemental resonance ionization mass spectrometry: a review,” Mass Spectrom. Rev. 8, 345 (1989).
[CrossRef]

Smith, D. H.

R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

D. H. Smith, J. P. Young, and R. W. Shaw, “Elemental resonance ionization mass spectrometry: a review,” Mass Spectrom. Rev. 8, 345 (1989).
[CrossRef]

Suri, B. M.

A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Isotopic selectivity calculations for multistep photoionization of calcium atoms using narrowband lasers,” J. Phys. B 35, 3677–3688 (2002).
[CrossRef]

Suryanarayana, M. V.

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

Uematsu, H.

W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
[CrossRef]

Wendt, K.

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Line shapes and optical selectivity in high-resolution, double-resonance, ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Young, J. P.

J. P. Young and R. W. Shaw, “Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry,” J. Opt. Soc. Am. B 12, 1398–1402 (1995).
[CrossRef]

R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

D. H. Smith, J. P. Young, and R. W. Shaw, “Elemental resonance ionization mass spectrometry: a review,” Mass Spectrom. Rev. 8, 345 (1989).
[CrossRef]

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Zoller, P.

P. Zoller and P. Lambropoulos, “Laser temporal coherence effects in two-photon, resonant, three-photon ionization,” J. Phys. B 13, 69–83 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Isotopic selectivity calculations for multistep photoionization of calcium atoms using narrowband lasers,” J. Phys. B 35, 3677–3688 (2002).
[CrossRef]

P. Zoller and P. Lambropoulos, “Laser temporal coherence effects in two-photon, resonant, three-photon ionization,” J. Phys. B 13, 69–83 (1980).
[CrossRef]

Mass Spectrom. Rev. (1)

D. H. Smith, J. P. Young, and R. W. Shaw, “Elemental resonance ionization mass spectrometry: a review,” Mass Spectrom. Rev. 8, 345 (1989).
[CrossRef]

Phys. Rev. A (4)

R. W. Shaw, J. P. Young, D. H. Smith, A. S. Bonanno, and J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

S. N. Dixit and P. Lambropoulos, “Theory of photoelectron angular distributions in resonant multiphoton ionization,” Phys. Rev. A 27, 861–874 (1983).
[CrossRef]

Bo-nian Dai and P. Lambropoulos, “Selective ionization: effects of power broadening, laser bandwidth, and interaction time on selectivity,” Phys. Rev. A 34, 3954–3961 (1986).
[CrossRef] [PubMed]

W. G. Jin, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Diode-laser hyperfine-structure spectroscopy of 138, 139La,” Phys. Rev. A 53, 064501 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Spectrochim. Acta, Part B (2)

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Line shapes and optical selectivity in high-resolution, double-resonance, ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

M. Sankari and M. V. Suryanarayana, “A theoretical study of the isotope selective excitation of 138La from 2D3/2, 5/2 states,” Spectrochim. Acta, Part B 52, 735–744 (1997).
[CrossRef]

Other (5)

P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988).

B. W. Shore, The Theory of Coherent Atomic Excitations (Wiley, New York, 1990).

C. H. Corliss and W. R. Bozman, “Experimental Transition Probabilities for Spectral Lines of Seventy Elements,” U.S. National Bureau of Standards Monograph No. 53 (U.S. Government Printing Office, Washington, D.C., 1962), p. 464.

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, New York, 1987), p. 80.

L. Radziemski, R. Solarz, and J. A. Paisner, Laser Spectroscopy and its Applications (Marcel Dekker, New York, 1987), p. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (3)

Tables Icon

Table 1 Isotope Ratio Enhancement (IRE) for Laser Linewidth of 50 MHz and Several Residual Doppler Widths

Tables Icon

Table 2 Isotope Ratio Enhancement (IRE) for Residual Doppler Width of 140 MHz and Several Values of Laser Linewidth

Tables Icon

Table 3 Comparison of Experimental Isotope Ratio Enhancement (IRE) with Theoretical for Three Values of Convoluted Atomic Linewidth Δνcon

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

IRE=S(XA/XB),
S=IA(νA)IB(νA).
ddtρ11=iΩR2(ρ21-ρ12)+A21ρ22,
ddtρ22=iΩR2(ρ12-ρ21)-2γI+1T2ρ22,
ddtρ21=iΩR2(ρ11-ρ22)-iΔ+A212+γI+γLρ21,
ddtρ12=iΩR2(ρ22-ρ11)--iΔ+A212+γI+γLρ12,
γL=2Δωlasβ2β2+Δ2.
ΩR,P2=3A21g2Ilasλ32πhcg1,
ΩR2=13ΩR,P2=A21g2Ilasλ32πhcg1.
ΩR=8.895×1010(λcm3g2A21IW/cm2/g1)1/2,
P(Tint)=1-ρ11(Tint)-ρ22(Tint).
IRE=PA(0, Tint)PB(Δ, Tint),
ΔνD=7.16×10-7ν0(T/M)1/2,
Δνb=ΔνD sin(θ/2),

Metrics