Abstract

A new model for surface-enhanced Raman scattering is presented that includes the dipole effect of the molecule. Under the effect of an external polarizing field, changes in the molecular dipole significantly change the charge distribution on the metal-sphere surface, thereby increasing the molecular Raman cross section. This process is unrelated to surface-plasmon resonance; quite to the contrary, it is preferred to work away from any such resonance.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mooradian, Raman Spectroscopy of Solids, Laser Handbook (North-Holland, Amsterdam, 1972).
  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [Crossref]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [Crossref]
  4. F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
    [Crossref] [PubMed]
  5. M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
    [Crossref]
  6. M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
    [Crossref]
  7. H. Grebel, Z. Iqbal, and A. Lan, “Detection of C60 using sur- face enhanced Raman scattering from metal coated periodic structures,” Appl. Phys. Lett. 79, 3194–3196 (2001).
    [Crossref]
  8. H. Grebel, Z. Iqbal, and A. Lan, “Detecting single wall nanotubes with surface enhanced Raman scattering from metal coated periodic structures,” Chem. Phys. Lett. 348, 203–208 (2001).
    [Crossref]
  9. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
    [Crossref]
  10. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
    [Crossref]
  11. Jin Kong, Electromagnetic Wave Theory, 2nd ed. (Wiley, New York, 1990).
  12. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, New York, 1984).
  13. J. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  14. A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
    [Crossref]
  15. H. Xu, J. Aizourua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [Crossref]
  16. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1105 (1997).
    [Crossref] [PubMed]
  17. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
    [Crossref]

2001 (2)

H. Grebel, Z. Iqbal, and A. Lan, “Detection of C60 using sur- face enhanced Raman scattering from metal coated periodic structures,” Appl. Phys. Lett. 79, 3194–3196 (2001).
[Crossref]

H. Grebel, Z. Iqbal, and A. Lan, “Detecting single wall nanotubes with surface enhanced Raman scattering from metal coated periodic structures,” Chem. Phys. Lett. 348, 203–208 (2001).
[Crossref]

2000 (2)

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[Crossref]

H. Xu, J. Aizourua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

1999 (2)

K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
[Crossref]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[Crossref]

1998 (1)

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
[Crossref]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1105 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

1996 (1)

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

1992 (1)

M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
[Crossref]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Aizourua, J.

H. Xu, J. Aizourua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Apell, P.

H. Xu, J. Aizourua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Arnold, M.

M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
[Crossref]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[Crossref]

Bussemer, P.

M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
[Crossref]

Dasari, R.

K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1105 (1997).
[Crossref] [PubMed]

Feld, M.

K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

Grabhorn, H.

M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
[Crossref]

Grebel, H.

H. Grebel, Z. Iqbal, and A. Lan, “Detection of C60 using sur- face enhanced Raman scattering from metal coated periodic structures,” Appl. Phys. Lett. 79, 3194–3196 (2001).
[Crossref]

H. Grebel, Z. Iqbal, and A. Lan, “Detecting single wall nanotubes with surface enhanced Raman scattering from metal coated periodic structures,” Chem. Phys. Lett. 348, 203–208 (2001).
[Crossref]

Hehl, K.

M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
[Crossref]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Hill, W.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
[Crossref]

Iqbal, Z.

H. Grebel, Z. Iqbal, and A. Lan, “Detecting single wall nanotubes with surface enhanced Raman scattering from metal coated periodic structures,” Chem. Phys. Lett. 348, 203–208 (2001).
[Crossref]

H. Grebel, Z. Iqbal, and A. Lan, “Detection of C60 using sur- face enhanced Raman scattering from metal coated periodic structures,” Appl. Phys. Lett. 79, 3194–3196 (2001).
[Crossref]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

Kahl, M.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
[Crossref]

Käll, M.

H. Xu, J. Aizourua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

Kostrewa, S.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
[Crossref]

Lan, A.

H. Grebel, Z. Iqbal, and A. Lan, “Detection of C60 using sur- face enhanced Raman scattering from metal coated periodic structures,” Appl. Phys. Lett. 79, 3194–3196 (2001).
[Crossref]

H. Grebel, Z. Iqbal, and A. Lan, “Detecting single wall nanotubes with surface enhanced Raman scattering from metal coated periodic structures,” Chem. Phys. Lett. 348, 203–208 (2001).
[Crossref]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1105 (1997).
[Crossref] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[Crossref]

Otto, A.

M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

Sarychev, A.

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[Crossref]

Shalaev, V.

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[Crossref]

Viets, C.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
[Crossref]

Voges, E.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

Xu, H.

H. Xu, J. Aizourua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Appl. Phys. Lett. (1)

H. Grebel, Z. Iqbal, and A. Lan, “Detection of C60 using sur- face enhanced Raman scattering from metal coated periodic structures,” Appl. Phys. Lett. 79, 3194–3196 (2001).
[Crossref]

Chem. Phys. Lett. (2)

H. Grebel, Z. Iqbal, and A. Lan, “Detecting single wall nanotubes with surface enhanced Raman scattering from metal coated periodic structures,” Chem. Phys. Lett. 348, 203–208 (2001).
[Crossref]

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Chem. Rev. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2975 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[Crossref]

J. Mod. Opt. (1)

M. Arnold, P. Bussemer, K. Hehl, H. Grabhorn, and A. Otto, “Enhanced Raman scattering from benzene condensed on a silver grating,” J. Mod. Opt. 39, 2329–2346 (1992).
[Crossref]

Phys. Rep. (1)

A. Sarychev and V. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275–371 (2000).
[Crossref]

Phys. Rev. E (1)

H. Xu, J. Aizourua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1671 (1997).
[Crossref]

F. J. Garcia-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1105 (1997).
[Crossref] [PubMed]

Sens. Actuators B (1)

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998).
[Crossref]

Other (4)

A. Mooradian, Raman Spectroscopy of Solids, Laser Handbook (North-Holland, Amsterdam, 1972).

Jin Kong, Electromagnetic Wave Theory, 2nd ed. (Wiley, New York, 1990).

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, New York, 1984).

J. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Metal sphere and a dipole.

Fig. 2
Fig. 2

(a) Geometry: An infinitesimal area, containing on induced charge, makes an angle θ with respect to the sphere’s center and is situated at a distance r from the molecular dipole. Rotational symmetry around the ϕ direction was assumed. (b) Simulation: The attraction between induced surface charges increases the charge density on the metal sphere. Top: dB=1, rm=0.1, rs=0.5, qs=1, qm=0.1. Middle: dB=0.01. Bottom: dB=0.002.

Fig. 3
Fig. 3

Circuit equivalent of a molecule with capacitance Cm, which is attached to a metallic sphere in series. B, barrier between the molecule and the sphere.

Fig. 4
Fig. 4

Circuit equivalent of a molecule between two metallic spheres. B, barrier. The molecular loop is highlighted; its current element is jm. The current element in the sphere is js.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U1=-qm2rs3/{2(rs+dB)2[(rs+dB)2-rs2]}+qm2rs3/{2(rs+dB+dm)2[(rs+dB+dm)2-rs2]}.
U1-qmqmdm/4dB(dB+dm).
U2=-qmqs/dB+qmqs/(dB+ds)+qmqs/(dB+dm)-qmqs/(dB+ds+dm).
U=(-qmqs)[dm/dB(dB+dm)].
δU=(-qmqs)[δdm/(dB+dm)2]-(3/4)4E0yE0yrs2δdm(1/2)(δP)E0y.
2dm/t2+(1/T)dm/t+grad Vv=0.
2δdm/t2+(1/T)δdm/t+(ωv)2δdm=+(1/4Mm)(3/4)4rs2{E1·E2*exp[j(ω1-ω2)t]+c.c.}.
δdm=(3/4)4rs2E1·E2*exp[j(ω1-ω2)t]/4Mm×[ωv2-(ω1-ω2)2+j(ω1-ω2)/T]-1+c.c.
(1/2)δP=(3/4)4E0yrs2δdm=(3/4)8(rs2)2E0yE1·E2*×exp[j(ω1-ω2)t]/{4Mm[ωv2-(ω1-ω2)2+j(ω1-ω2)/T]}+c.c.
δUM=(1/c2)(-jmdVmjsdVs)[δdm/(dB+dm)2].
δUM=(δCm)(3/4)4(2rs)2(1/nmns)Ey0E0y.
div Js+ρs/t=0.
σρs/30+ρs/t=0.

Metrics