Abstract

A method for the generation of attosecond electromagnetic pulses is suggested. The key idea of the method consists in using a two-color laser pump for high-order harmonic generation composed of a low-frequency linearly polarized field and a high-frequency elliptically polarized field. Such a two-color pump can provide for the return of photoelectrons (after atom ionization) to the vicinity of the parent ion with high kinetic energy and their recombination for only specific ionization moments t0. The range of these moments, δt0, is defined by the velocity of electron wave-packet spreading and the time that the photoelectron spent in the continuum (before the recombination). Conditions were found that minimize the range δt0. For the specific parameters of a two-color pump, the duration of recombination emission, τg, can be in the range of 1–10 as. With an increase of pump intensity, the duration τg decreases and can be reduced to the subattosecond scale.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of microscopic and macroscopic effects on attosecond pulse generation using two-color laser fields

C. Chen, C. Hernández-García, Z. Tao, W. You, Y. Zhang, D. Zusin, C. Gentry, P. Tengdin, A. Becker, A. Jaron-Becker, H. Kapteyn, and M. Murnane
Opt. Express 25(23) 28684-28696 (2017)

Shaped multi-cycle two-color laser field for generating an intense isolated XUV pulse toward 100 attoseconds

Qingbin Zhang, Lixin He, Pengfei Lan, and Peixiang Lu
Opt. Express 22(11) 13213-13233 (2014)

Broadband isolated attosecond pulse with high spatiotemporal quality in pre-excited medium by multi-cycle two-color fields

Jianghua Luo, Weiyi Hong, Qingbin Zhang, Yang Li, and Peixiang Lu
Opt. Express 20(19) 21346-21356 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription