Abstract

We have generated a vacuum-ultraviolet light below 160 nm by sum-frequency mixing in an optically contacted, prism-coupled KBe2BO3F2 crystal. The vacuum-ultraviolet light was generated as the fifth harmonic of a tunable, single-mode, 1-kHz Ti:sapphire laser system. The wavelength of 156 nm, to our knowledge, is the shortest ever obtained by use of nonlinear crystals in a phase-matched process. In addition, we demonstrated a 157.6-nm light source as an inspection tool for F2 laser lithography with an average power of 0.8 µW.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suganuma, H. Kubo, O. Wakabayashi, H. Mizoguchi, K. Nakao, Y. Nabekawa, T. Togashi, and S. Watanabe, “157-nm coherent light source as an inspection tool for F2 laser lithography,” Opt. Lett. 27, 46–48 (2002).
    [CrossRef]
  2. T. Togashi, T. Kanai, T. Sekikawa, S. Watanabe, C. T. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal,” Opt. Lett. 28, 254–256 (2003).
    [CrossRef] [PubMed]
  3. V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O84H2O,” Electron. Lett. 34, 1–2 (1998).
  4. C. T. Chen, J. Lu, T. Togashi, T. Suganuma, T. Sekikawa, S. Watanabe, Z. Xu, and J. Wang, “Second-harmonic generation from a KBe2BO3F2 crystal in deep ultraviolet,” Opt. Lett. 27, 637–639 (2002).
    [CrossRef]
  5. V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
    [CrossRef]
  6. A. Borsutzky, R. Brünger, Ch. Huang, and R. Wallenstein, “Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52, 55–62 (1991).
    [CrossRef]
  7. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
    [CrossRef]
  8. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963).
    [CrossRef]
  9. Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
    [CrossRef]
  10. I. Davoli, V. V. Mikhailin, S. Stizza, and A. N. Yasil’ev, “Urbach effect in the kinetics of core holes for excitation of cross-luminescence,” J. Lumin. 51, 275–282 (1992).
    [CrossRef]
  11. H. Kouta and Y. Kuwano, “Attaining 186-nm light generation in cooled β-BaB2O4 crystal,” Opt. Lett. 24, 1230–1232 (1999).
    [CrossRef]
  12. H. Setoya, “Report on F2 laser lithography project” (Association of Super-Advanced Electronics Technology, Tokyo, 2002).

2003 (1)

2002 (2)

2000 (1)

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
[CrossRef]

1999 (2)

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

H. Kouta and Y. Kuwano, “Attaining 186-nm light generation in cooled β-BaB2O4 crystal,” Opt. Lett. 24, 1230–1232 (1999).
[CrossRef]

1998 (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O84H2O,” Electron. Lett. 34, 1–2 (1998).

1996 (1)

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

1992 (1)

I. Davoli, V. V. Mikhailin, S. Stizza, and A. N. Yasil’ev, “Urbach effect in the kinetics of core holes for excitation of cross-luminescence,” J. Lumin. 51, 275–282 (1992).
[CrossRef]

1991 (1)

A. Borsutzky, R. Brünger, Ch. Huang, and R. Wallenstein, “Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52, 55–62 (1991).
[CrossRef]

1963 (1)

Borsutzky, A.

A. Borsutzky, R. Brünger, Ch. Huang, and R. Wallenstein, “Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52, 55–62 (1991).
[CrossRef]

Brünger, R.

A. Borsutzky, R. Brünger, Ch. Huang, and R. Wallenstein, “Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52, 55–62 (1991).
[CrossRef]

Chen, C.

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Chen, C. T.

Davoli, I.

I. Davoli, V. V. Mikhailin, S. Stizza, and A. N. Yasil’ev, “Urbach effect in the kinetics of core holes for excitation of cross-luminescence,” J. Lumin. 51, 275–282 (1992).
[CrossRef]

Deng, D.

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Fujikawa, S.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
[CrossRef]

Huang, Ch.

A. Borsutzky, R. Brünger, Ch. Huang, and R. Wallenstein, “Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52, 55–62 (1991).
[CrossRef]

Kanai, T.

Kittelmann, O.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

Kojima, T.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
[CrossRef]

Komatsu, R.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

Konno, S.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
[CrossRef]

Kouta, H.

Kubo, H.

Kuwano, Y.

Lu, J.

Malitson, I. H.

Mikhailin, V. V.

I. Davoli, V. V. Mikhailin, S. Stizza, and A. N. Yasil’ev, “Urbach effect in the kinetics of core holes for excitation of cross-luminescence,” J. Lumin. 51, 275–282 (1992).
[CrossRef]

Mizoguchi, H.

Nabekawa, Y.

T. Suganuma, H. Kubo, O. Wakabayashi, H. Mizoguchi, K. Nakao, Y. Nabekawa, T. Togashi, and S. Watanabe, “157-nm coherent light source as an inspection tool for F2 laser lithography,” Opt. Lett. 27, 46–48 (2002).
[CrossRef]

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
[CrossRef]

Nakao, K.

Noack, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O84H2O,” Electron. Lett. 34, 1–2 (1998).

Petrov, V.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O84H2O,” Electron. Lett. 34, 1–2 (1998).

Ringling, J.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O84H2O,” Electron. Lett. 34, 1–2 (1998).

Sekikawa, T.

Stizza, S.

I. Davoli, V. V. Mikhailin, S. Stizza, and A. N. Yasil’ev, “Urbach effect in the kinetics of core holes for excitation of cross-luminescence,” J. Lumin. 51, 275–282 (1992).
[CrossRef]

Suganuma, T.

Tang, D.

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Togashi, T.

Wakabayashi, O.

Wallenstein, R.

A. Borsutzky, R. Brünger, Ch. Huang, and R. Wallenstein, “Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52, 55–62 (1991).
[CrossRef]

Wang, J.

Watanabe, S.

Wong, G. K. L.

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Wu, B.

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Xu, Z.

Yasil’ev, A. N.

I. Davoli, V. V. Mikhailin, S. Stizza, and A. N. Yasil’ev, “Urbach effect in the kinetics of core holes for excitation of cross-luminescence,” J. Lumin. 51, 275–282 (1992).
[CrossRef]

Yasui, K.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
[CrossRef]

Ye, N.

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Zhang, C.

Zhang, J.

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “All-solid-state high-peak-power Ti:sapphire laser system above 5-kHz repetition rate,” Appl. Phys. B 70, S171–S179 (2000).
[CrossRef]

A. Borsutzky, R. Brünger, Ch. Huang, and R. Wallenstein, “Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52, 55–62 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, and D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
[CrossRef]

Electron. Lett. (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O84H2O,” Electron. Lett. 34, 1–2 (1998).

IEEE J. Sel. Top. Quantum Electron. (1)

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

J. Lumin. (1)

I. Davoli, V. V. Mikhailin, S. Stizza, and A. N. Yasil’ev, “Urbach effect in the kinetics of core holes for excitation of cross-luminescence,” J. Lumin. 51, 275–282 (1992).
[CrossRef]

Opt. Lett. (4)

Other (1)

H. Setoya, “Report on F2 laser lithography project” (Association of Super-Advanced Electronics Technology, Tokyo, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmittance of a 1-mm-thick KBBF crystal versus the wavelength measured by the normal incidence of a randomly polarized light.

Fig. 2
Fig. 2

Structure of an optically contacted, prism-coupled KBBF crystal.

Fig. 3
Fig. 3

Output power of the second harmonic of a frequency-doubled single-mode Ti:sapphire laser by KBBF crystal versus the wavelength.

Fig. 4
Fig. 4

Experimental setup for the generation of the fifth harmonic of the single-mode Ti:sapphire laser.

Fig. 5
Fig. 5

Output power of the fourth harmonic by the BBO crystal versus the wavelength.

Fig. 6
Fig. 6

Phase-matching angle versus fifth-harmonic wavelength of the single-mode Ti:sapphire laser. The solid curve is the calculation by the Sellmeier equations.6 Closed squares are the measured phase-matching angles.

Fig. 7
Fig. 7

Output power versus fifth-harmonic wavelength of the single-mode Ti:sapphire laser.

Fig. 8
Fig. 8

Pulse shape of the fifth harmonic at 157.6 nm measured by the biplanar phototube.

Fig. 9
Fig. 9

Temperature dependence of the output power at 157.6 nm.

Tables (1)

Tables Icon

Table 1 List of the Output Power of Each Harmonic

Metrics