Abstract

Building on previous efficient Raman downconversion achievements, we present analytical theoretical results predicting that the upconversion efficiency from a continuous-wave pump beam into a single Raman anti-Stokes order can approach the quantum limit of 50%. We consider high-finesse cavity enhancement of the Raman-resonant four-wave mixing process to enable pumping with relatively low-power lasers. In addition to its practical value as a means of efficiently upconverting visible and near-infrared continuous-wave laser light, this technique can offer a probe into the fundamental limits and gain-suppression subtleties associated with Raman-resonant four-wave mixing.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Reiser, T. D. Raymond, R. B. Michie, and A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859–1869 (1989).
    [CrossRef]
  2. M. Suzuki, S. Wada, and H. Tashiro, “Temporally resolved ring-shaped patterns beyond the phase-matching angle in the Stokes and anti-Stokes waves,” J. Opt. Soc. Am. B 14, 1672–1679 (1997).
    [CrossRef]
  3. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
    [CrossRef] [PubMed]
  4. A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett. 24, 625–627 (1999).
    [CrossRef]
  5. D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, “Rotational Raman generation with near-unity conversion efficiency,” Opt. Lett. 27, 769–771 (2002).
    [CrossRef]
  6. D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor,” Phys. Rev. Lett. 61, 1827–1830 (1988).
    [CrossRef] [PubMed]
  7. D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
    [CrossRef] [PubMed]
  8. A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83, 4049–4052 (1999).
    [CrossRef]
  9. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
    [CrossRef]
  10. J. K. Brasseur, R. F. Teehan, P. A. Roos, and J. L. Carlsten, “High power deuterium Raman laser at 532 nm,” Appl. Opt. (to be published).
  11. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
    [CrossRef]
  12. L. S. Meng, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
    [CrossRef]
  13. K. S. Repasky, J. K. Brasseur, L. S. Meng, and J. L. Carlsten, “High-efficiency, continuous-wave Raman lasers,” J. Opt. Soc. Am. B 16, 717–721 (1999).
    [CrossRef]
  14. P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
    [CrossRef]
  15. L. S. Meng, “Continuous-wave Raman laser in H2: semiclassical theory and diode pumping experiments,” Ph.D. thesis (Department of Physics, Montana State University, Bozeman, 2002), www.physics.montana.edu/optics/jlc/phd.html.
  16. J. K. Brasseur, P. A. Roos, and J. L. Carlsten, “Coherent anti-Stokes emission in a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 17, 1223–1228 (2000).
    [CrossRef]
  17. K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
    [CrossRef] [PubMed]
  18. L. S. Meng, P. A. Roos, and J. L. Carlsten, “Continuous-wave rotational Raman laser in H2,” Opt. Lett. 27, 1226–1228 (2002).
    [CrossRef]
  19. P. A. Roos, L. S. Meng, and J. L. Carlsten, “Doppler-induced unidirectional operation of a continuous-wave Raman ring laser in H2,” Appl. Opt. 42, 5517–5521 (2003).
    [CrossRef] [PubMed]
  20. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55, R4019–4022 (1997).
    [CrossRef]
  21. P. A. Roos, “The diode-pumped continuous-wave Raman laser: classical, quantum, and thermo-optic fundamentals,” Ph.D. thesis (Department of Physics, Montana State University, Bozeman, 2002), www.physics.montana.edu/optics/jlc/phd.html.
  22. J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, “Frequency tuning characteristics of a continuous-wave Ra man laser in H2,” J. Opt. Soc. Am. B 17, 1229–1232 (2000).
    [CrossRef]
  23. B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. Am. B 7, 234–238 (1990).
    [CrossRef]
  24. D. E. Gray, ed., American Institute of Physics Handbook, 2nd. ed. (McGraw-Hill, New York, 1963), pp. 6–95.
  25. N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
    [CrossRef]
  26. G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, “Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions,” Sov. J. Quantum Electron. 12, 395–397 (1985).
    [CrossRef]
  27. M. D. Duncan, R. Mahon, J. Reintjes, and L. L. Tankersley, “Parametric Raman gain suppression in D2 and H2,” Opt. Lett. 11, 803–805 (1986).
    [CrossRef] [PubMed]
  28. K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
    [CrossRef]

2003 (2)

P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
[CrossRef]

P. A. Roos, L. S. Meng, and J. L. Carlsten, “Doppler-induced unidirectional operation of a continuous-wave Raman ring laser in H2,” Appl. Opt. 42, 5517–5521 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (2)

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

L. S. Meng, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
[CrossRef]

2000 (2)

1999 (5)

1998 (1)

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

1997 (2)

1996 (1)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

1990 (2)

D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
[CrossRef] [PubMed]

B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. Am. B 7, 234–238 (1990).
[CrossRef]

1989 (1)

1988 (1)

D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor,” Phys. Rev. Lett. 61, 1827–1830 (1988).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, “Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions,” Sov. J. Quantum Electron. 12, 395–397 (1985).
[CrossRef]

1964 (1)

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

Bloembergen, N.

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

Bobbs, B.

Boyd, R. W.

D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
[CrossRef] [PubMed]

D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor,” Phys. Rev. Lett. 61, 1827–1830 (1988).
[CrossRef] [PubMed]

Brasseur, J. K.

Carlsten, J. L.

P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
[CrossRef]

P. A. Roos, L. S. Meng, and J. L. Carlsten, “Doppler-induced unidirectional operation of a continuous-wave Raman ring laser in H2,” Appl. Opt. 42, 5517–5521 (2003).
[CrossRef] [PubMed]

L. S. Meng, P. A. Roos, and J. L. Carlsten, “Continuous-wave rotational Raman laser in H2,” Opt. Lett. 27, 1226–1228 (2002).
[CrossRef]

L. S. Meng, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
[CrossRef]

J. K. Brasseur, P. A. Roos, and J. L. Carlsten, “Coherent anti-Stokes emission in a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 17, 1223–1228 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, “Frequency tuning characteristics of a continuous-wave Ra man laser in H2,” J. Opt. Soc. Am. B 17, 1229–1232 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
[CrossRef]

P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
[CrossRef]

K. S. Repasky, J. K. Brasseur, L. S. Meng, and J. L. Carlsten, “High-efficiency, continuous-wave Raman lasers,” J. Opt. Soc. Am. B 16, 717–721 (1999).
[CrossRef]

Duncan, M. D.

Gabel, K.

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

Gaeta, A. L.

D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
[CrossRef] [PubMed]

Gauthier, D. J.

D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
[CrossRef] [PubMed]

D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor,” Phys. Rev. Lett. 61, 1827–1830 (1988).
[CrossRef] [PubMed]

Harris, S. E.

D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, “Rotational Raman generation with near-unity conversion efficiency,” Opt. Lett. 27, 769–771 (2002).
[CrossRef]

A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett. 24, 625–627 (1999).
[CrossRef]

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55, R4019–4022 (1997).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Heyer, H.

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

Hickman, A. P.

Hirakawa, Y.

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Il’inskii, Yu. A.

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, “Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions,” Sov. J. Quantum Electron. 12, 395–397 (1985).
[CrossRef]

Imasaka, T.

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Jain, M.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Lebert, R.

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

Loosen, P.

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83, 4049–4052 (1999).
[CrossRef]

Mahon, R.

Malcuit, M. S.

D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
[CrossRef] [PubMed]

D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor,” Phys. Rev. Lett. 61, 1827–1830 (1988).
[CrossRef] [PubMed]

Manuszak, D.

Meng, L. S.

Merriam, A. J.

A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett. 24, 625–627 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Michie, R. B.

Mikheev, G. M.

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, “Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions,” Sov. J. Quantum Electron. 12, 395–397 (1985).
[CrossRef]

Murphy, S. K.

P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
[CrossRef]

Poprawe, R.

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

Ralph, T. C.

P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
[CrossRef]

Raymond, T. D.

Reintjes, J.

Reiser, C.

Repasky, K. S.

Roos, P. A.

P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
[CrossRef]

P. A. Roos, L. S. Meng, and J. L. Carlsten, “Doppler-induced unidirectional operation of a continuous-wave Raman ring laser in H2,” Appl. Opt. 42, 5517–5521 (2003).
[CrossRef] [PubMed]

L. S. Meng, P. A. Roos, and J. L. Carlsten, “Continuous-wave rotational Raman laser in H2,” Opt. Lett. 27, 1226–1228 (2002).
[CrossRef]

L. S. Meng, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
[CrossRef]

J. K. Brasseur, P. A. Roos, and J. L. Carlsten, “Coherent anti-Stokes emission in a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 17, 1223–1228 (2000).
[CrossRef]

J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, “Frequency tuning characteristics of a continuous-wave Ra man laser in H2,” J. Opt. Soc. Am. B 17, 1229–1232 (2000).
[CrossRef]

P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
[CrossRef]

Rubbuldt, P.

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

Scully, M. O.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83, 4049–4052 (1999).
[CrossRef]

Sharpe, S. J.

Shen, Y. R.

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

Shinzen, K.

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Sokolov, A. V.

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55, R4019–4022 (1997).
[CrossRef]

Suzuki, M.

Tankersley, L. L.

Tashiro, H.

Venkin, G. V.

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, “Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions,” Sov. J. Quantum Electron. 12, 395–397 (1985).
[CrossRef]

Wada, S.

Walker, D. R.

Warner, C.

White, A. G.

P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
[CrossRef]

Xia, H.

A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett. 24, 625–627 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Yavuz, D. D.

Yin, G. Y.

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83, 4049–4052 (1999).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. B (7)

Opt. Commun. (1)

K. Gabel, P. Rubbuldt, R. Lebert, P. Loosen, R. Poprawe, and H. Heyer, “Diode pumped, chirped mirror compensated fs-laser,” Opt. Commun. 153, 275–281 (1998).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (2)

P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur, “Quantum theory of the far-off-resonance cw Raman laser: Heisenberg–Langevin approach,” Phys. Rev. A 68, 013802 (2003).
[CrossRef]

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55, R4019–4022 (1997).
[CrossRef]

Phys. Rev. Lett. (6)

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, “Polarization instabilities of counterpropagating laser beams in sodium vapor,” Phys. Rev. Lett. 61, 1827–1830 (1988).
[CrossRef] [PubMed]

D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83, 4049–4052 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. V. Venkin, Yu. A. Il’inskii, and G. M. Mikheev, “Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions,” Sov. J. Quantum Electron. 12, 395–397 (1985).
[CrossRef]

Other (4)

D. E. Gray, ed., American Institute of Physics Handbook, 2nd. ed. (McGraw-Hill, New York, 1963), pp. 6–95.

J. K. Brasseur, R. F. Teehan, P. A. Roos, and J. L. Carlsten, “High power deuterium Raman laser at 532 nm,” Appl. Opt. (to be published).

P. A. Roos, “The diode-pumped continuous-wave Raman laser: classical, quantum, and thermo-optic fundamentals,” Ph.D. thesis (Department of Physics, Montana State University, Bozeman, 2002), www.physics.montana.edu/optics/jlc/phd.html.

L. S. Meng, “Continuous-wave Raman laser in H2: semiclassical theory and diode pumping experiments,” Ph.D. thesis (Department of Physics, Montana State University, Bozeman, 2002), www.physics.montana.edu/optics/jlc/phd.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

To-scale energy-level diagram showing (a) the pertinent atomic levels, fields, and single-photon detunings (Δ’s), and (b) the energy flow for the overall anti-Stokes generation process.

Fig. 2
Fig. 2

External photon-conversion efficiencies for (a) the Stokes and (b) the anti-Stokes as functions of the pump rate. Curves are given for several different values of the relative gain parameter x0, and for idealized experimental conditions. The peak conversion occurs for rp=4.

Fig. 3
Fig. 3

Plots showing (a) the normalized laser threshold and (b) the anti-Stokes photon conversion efficiency as functions of the relative gain parameter x. The solid curves represent idealized conditions, the dotted curves labeled B include imperfect spatial overlap and phase matching, and the dotted curves labeled C additionally include mirror losses.

Fig. 4
Fig. 4

Conceptual schematic showing high-finesse cavity longitudinal modes in the presence of dispersion. Vertical lines represent longitudinal cavity modes. The pump laser frequency is actively stabilized to one cavity mode resonance (ωp) and the Stokes builds automatically on another (ωs). However, the anti-Stokes generation frequency (ωas) does not match a cavity mode resonance frequency unless dispersion compensation measures are taken.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

α˙p=-κpαp-G1|αs|2αp+G2|αas|2αp+τrt-1Tp,0αpin,
α˙s=-κsαs+G1|αp|2αs+G12αp2αas*,
α˙as=-κasαas-G2|αp|2αas-G12αp2αs*,
J˙11=γ¯21J22-2G1|αs|2|αp|2-2G2|αp|2|αas|2-(2G12αp2αs*αas*+c.c.),
J˙22=-J˙11,
|αp|2=11-xκsG1,
|αs|2=11-x2/yκpG1(rp-1),
|αas|2=x-x2/y1-xκsκas|αs|2,
|αpth|2=11-xκp2κsτrt2G1Tp,0.
Pq=ωqτrt|αq|2(q=p, s, as),
x1-2x0(1-y)[(1-x0)2+4x0(1-y)]1/2-(1-x0)(0<y<1)x0(y=1)
y|G12|2G1G2=atomsup2us*uas*dr2atoms|up|2|us|2dratoms|uas|2|up|2dr,
y4(kp+ks)(kas+kp)(2kp+ks+kas)2 sincLrt2(2kp-ks-kas),
x0G2G1κsκasG2FasG1Fs,
ηs,peak=Ts,0|αs(rp=4)|24|αpth|2=1-x1-x2/yTp,0(1-Rp,rt)Ts,0(1-Rs,rt),
ηaspeak=Tas,0|αas(rp=4)|24|αpth|2=x-x2/y1-x2/yTp,0(1-Rp,rt)Tas,0(1-Ras,rt),
G1=|μ13|2|μ23|2ωpωsρVint,14022γ21VpVsΔ2,
G2=|μ13|2|μ23|2ωasωpρVint,24022γ21VasVpΔas2,
G12=|μ13|2|μ23|2ωpωsωasρVint,124022γ21VpVsVasΔΔas,
Vq=cavity|uq|2dr,
Vint,1=atoms|up|2|us|2dr,
Vint,2=atoms|uas|2|up|2dr,
Vint,12=atomsup2us*uas*dr.
G1=8ωpα1τrt2tan-1(L/b)λp+λs,
αas=-G12αp2αs*κas+G2|αp|2.
(κs-G1|αp|2)(κas+G2|αp|2)αs=-|G12|2|αp|4αs.
x0(1-y)z2+(1-x0)z-1=0,
zG1|αp|2κs.
|αp|2=κsG1×±[(1-x0)2+4x0(1-y)]1/2-(1-x0)2x0(1-y)(0<y<1)11-x0(y=1).

Metrics