Abstract

The enhancement of stimulated Raman scattering (SRS) of weak-gain Raman modes in pendant drops is accomplished by overlapping Stokes wavelengths of the Raman modes with the Rhodamine 640 dye-lasing gain region (called the gain-overlap method). The dye concentration and the pumping intensity of frequency-doubled Nd:YAG lasers determine the efficiency of the enhancement. We apply the gain-overlap technique at optimal dye concentration and pump intensity to probe minority species in pendant drops formed by binary mixtures. The limits of detectable concentrations of the minority species, methanol in methanol–ethanol and ethanol in ethanol–water (dye-doped) mixtures, are much less than those in undoped mixtures. The smooth fluorescence-lasing spectral curves emitted from dye-doped pendant drops reduce complications in distinguishing SRS signals from quasi-periodic fluorescence-lasing spectra in microdroplets.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 10, pp. 141–186.
  2. M. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, “Efficient pumping of minority species stimulated Raman (SRS) by majority species SRS in a microdroplets of a binary mixture,” Chem. Phys. Lett. 239, 361–368 (1995).
    [CrossRef]
  3. A. Biswas, R. L. Armstrong, and R. G. Pinnick, “Stimulated Raman-scattering threshold behavior of behavior of binary mixture micrometer-sized droplets,” Opt. Lett. 15, 1191–1193 (1990).
    [CrossRef] [PubMed]
  4. A. S. Kwok and R. K. Chang, “Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering,” Opt. Lett. 17, 1262–1264 (1992).
    [CrossRef] [PubMed]
  5. A. S. Kwok and R. K. Chang, “Suppression of lasing by stimulated Raman scattering in microdroplets,” Opt. Lett. 18, 1597–1599 (1993).
    [CrossRef] [PubMed]
  6. L. Pasternack, J. W. Fleming, and J. C. Owrutsky, “Optically seeded stimulated Raman scattering of aqueous sulfate microdroplets,” J. Opt. Soc. Am. B 13, 1510–1519 (1996).
    [CrossRef]
  7. J. Popp and V. E. Roman, “Species detection in single microparticles using nonlinear Raman scattering,” J. Mol. Struct. 480, 323–327 (1999).
    [CrossRef]
  8. V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Species identification of multicomponent microdroplets by seeding stimulated Raman scattering,” J. Opt. Soc. Am. B 16, 370–375 (1999).
    [CrossRef]
  9. S. Schlücher, V. E. Roman, W. Kiefer, and J. Popp, “Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy,” Anal. Chem. 73, 3146–3152 (2001).
    [CrossRef]
  10. X. Y. Pu, C. W. Chan, and W. K. Lee, “Measurement of lasing intensity distribution of a dye-doped pendant drop,” Opt. Lett. 25, 1514–1516 (2000).
    [CrossRef]
  11. X. Y. Pu and W. K. Lee, “Lasing characteristics of a pendant drop deformed by an applied electric field,” Opt. Lett. 25, 466–468 (2000).
    [CrossRef]
  12. S. Chang, N. B. Rex, and R. K. Chang, “Chemical lasing pendant droplets: lasing spectra, emission pattern, and cavity lifetime measurements,” J. Opt. Soc. Am. B 16, 1224–1235 (1999).
    [CrossRef]
  13. S. Uetake, M. Katsmagawa, M. Suznki, and K. Haknta, “Stimulated Raman scattering in a liquid-hydrogen droplet,” Phys. Rev. A 61, 011803 (2000).
    [CrossRef]
  14. X. Y. Pu, Y. J. Xia, and W. K. Lee, “Reduction of lasing threshold by deforming a circular resonator,” Chin. Phys. Lett. 19, 500–503 (2002).
    [CrossRef]
  15. X. Y. Pu, S. Zhang, C. W. Chan, and W. K. Lee, “Lasing features of dye-doped pendant drops added with polymer particles: spectral blue shift and intensity enhancement,” Chin. Phys. 11, 1179–1183 (2002).
    [CrossRef]
  16. B. Schrader and W. Meier, Raman-Infrared Atlas of Organic Compounds, Spectrum A 3–11 (Verlag Chemie, Weinheim, Germany, 1974).
  17. S. X. Qian, J. B. Snow, H. K. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
    [CrossRef] [PubMed]

2002 (2)

X. Y. Pu, Y. J. Xia, and W. K. Lee, “Reduction of lasing threshold by deforming a circular resonator,” Chin. Phys. Lett. 19, 500–503 (2002).
[CrossRef]

X. Y. Pu, S. Zhang, C. W. Chan, and W. K. Lee, “Lasing features of dye-doped pendant drops added with polymer particles: spectral blue shift and intensity enhancement,” Chin. Phys. 11, 1179–1183 (2002).
[CrossRef]

2001 (1)

S. Schlücher, V. E. Roman, W. Kiefer, and J. Popp, “Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy,” Anal. Chem. 73, 3146–3152 (2001).
[CrossRef]

2000 (3)

1999 (3)

1996 (1)

1995 (1)

M. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, “Efficient pumping of minority species stimulated Raman (SRS) by majority species SRS in a microdroplets of a binary mixture,” Chem. Phys. Lett. 239, 361–368 (1995).
[CrossRef]

1993 (1)

1992 (1)

1990 (1)

1986 (1)

S. X. Qian, J. B. Snow, H. K. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Armstrong, R. L.

Biswas, A.

Chan, C. W.

X. Y. Pu, S. Zhang, C. W. Chan, and W. K. Lee, “Lasing features of dye-doped pendant drops added with polymer particles: spectral blue shift and intensity enhancement,” Chin. Phys. 11, 1179–1183 (2002).
[CrossRef]

X. Y. Pu, C. W. Chan, and W. K. Lee, “Measurement of lasing intensity distribution of a dye-doped pendant drop,” Opt. Lett. 25, 1514–1516 (2000).
[CrossRef]

Chang, R. K.

S. Chang, N. B. Rex, and R. K. Chang, “Chemical lasing pendant droplets: lasing spectra, emission pattern, and cavity lifetime measurements,” J. Opt. Soc. Am. B 16, 1224–1235 (1999).
[CrossRef]

M. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, “Efficient pumping of minority species stimulated Raman (SRS) by majority species SRS in a microdroplets of a binary mixture,” Chem. Phys. Lett. 239, 361–368 (1995).
[CrossRef]

A. S. Kwok and R. K. Chang, “Suppression of lasing by stimulated Raman scattering in microdroplets,” Opt. Lett. 18, 1597–1599 (1993).
[CrossRef] [PubMed]

A. S. Kwok and R. K. Chang, “Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering,” Opt. Lett. 17, 1262–1264 (1992).
[CrossRef] [PubMed]

S. X. Qian, J. B. Snow, H. K. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Chang, S.

Fields, M. H.

Fleming, J. W.

Gillespie, J. B.

M. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, “Efficient pumping of minority species stimulated Raman (SRS) by majority species SRS in a microdroplets of a binary mixture,” Chem. Phys. Lett. 239, 361–368 (1995).
[CrossRef]

Haknta, K.

S. Uetake, M. Katsmagawa, M. Suznki, and K. Haknta, “Stimulated Raman scattering in a liquid-hydrogen droplet,” Phys. Rev. A 61, 011803 (2000).
[CrossRef]

Katsmagawa, M.

S. Uetake, M. Katsmagawa, M. Suznki, and K. Haknta, “Stimulated Raman scattering in a liquid-hydrogen droplet,” Phys. Rev. A 61, 011803 (2000).
[CrossRef]

Kiefer, W.

S. Schlücher, V. E. Roman, W. Kiefer, and J. Popp, “Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy,” Anal. Chem. 73, 3146–3152 (2001).
[CrossRef]

V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Species identification of multicomponent microdroplets by seeding stimulated Raman scattering,” J. Opt. Soc. Am. B 16, 370–375 (1999).
[CrossRef]

Kwok, A. S.

Lee, W. K.

X. Y. Pu, Y. J. Xia, and W. K. Lee, “Reduction of lasing threshold by deforming a circular resonator,” Chin. Phys. Lett. 19, 500–503 (2002).
[CrossRef]

X. Y. Pu, S. Zhang, C. W. Chan, and W. K. Lee, “Lasing features of dye-doped pendant drops added with polymer particles: spectral blue shift and intensity enhancement,” Chin. Phys. 11, 1179–1183 (2002).
[CrossRef]

X. Y. Pu and W. K. Lee, “Lasing characteristics of a pendant drop deformed by an applied electric field,” Opt. Lett. 25, 466–468 (2000).
[CrossRef]

X. Y. Pu, C. W. Chan, and W. K. Lee, “Measurement of lasing intensity distribution of a dye-doped pendant drop,” Opt. Lett. 25, 1514–1516 (2000).
[CrossRef]

Mazumder, M. M.

M. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, “Efficient pumping of minority species stimulated Raman (SRS) by majority species SRS in a microdroplets of a binary mixture,” Chem. Phys. Lett. 239, 361–368 (1995).
[CrossRef]

Owrutsky, J. C.

Pasternack, L.

Pinnick, R. G.

Popp, J.

S. Schlücher, V. E. Roman, W. Kiefer, and J. Popp, “Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy,” Anal. Chem. 73, 3146–3152 (2001).
[CrossRef]

J. Popp and V. E. Roman, “Species detection in single microparticles using nonlinear Raman scattering,” J. Mol. Struct. 480, 323–327 (1999).
[CrossRef]

V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Species identification of multicomponent microdroplets by seeding stimulated Raman scattering,” J. Opt. Soc. Am. B 16, 370–375 (1999).
[CrossRef]

Pu, X. Y.

X. Y. Pu, Y. J. Xia, and W. K. Lee, “Reduction of lasing threshold by deforming a circular resonator,” Chin. Phys. Lett. 19, 500–503 (2002).
[CrossRef]

X. Y. Pu, S. Zhang, C. W. Chan, and W. K. Lee, “Lasing features of dye-doped pendant drops added with polymer particles: spectral blue shift and intensity enhancement,” Chin. Phys. 11, 1179–1183 (2002).
[CrossRef]

X. Y. Pu and W. K. Lee, “Lasing characteristics of a pendant drop deformed by an applied electric field,” Opt. Lett. 25, 466–468 (2000).
[CrossRef]

X. Y. Pu, C. W. Chan, and W. K. Lee, “Measurement of lasing intensity distribution of a dye-doped pendant drop,” Opt. Lett. 25, 1514–1516 (2000).
[CrossRef]

Qian, S. X.

S. X. Qian, J. B. Snow, H. K. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Rex, N. B.

Roman, V. E.

S. Schlücher, V. E. Roman, W. Kiefer, and J. Popp, “Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy,” Anal. Chem. 73, 3146–3152 (2001).
[CrossRef]

J. Popp and V. E. Roman, “Species detection in single microparticles using nonlinear Raman scattering,” J. Mol. Struct. 480, 323–327 (1999).
[CrossRef]

V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Species identification of multicomponent microdroplets by seeding stimulated Raman scattering,” J. Opt. Soc. Am. B 16, 370–375 (1999).
[CrossRef]

Schaschek, K.

M. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, “Efficient pumping of minority species stimulated Raman (SRS) by majority species SRS in a microdroplets of a binary mixture,” Chem. Phys. Lett. 239, 361–368 (1995).
[CrossRef]

Schlücher, S.

S. Schlücher, V. E. Roman, W. Kiefer, and J. Popp, “Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy,” Anal. Chem. 73, 3146–3152 (2001).
[CrossRef]

Snow, J. B.

S. X. Qian, J. B. Snow, H. K. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Suznki, M.

S. Uetake, M. Katsmagawa, M. Suznki, and K. Haknta, “Stimulated Raman scattering in a liquid-hydrogen droplet,” Phys. Rev. A 61, 011803 (2000).
[CrossRef]

Tzeng, H. K.

S. X. Qian, J. B. Snow, H. K. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Uetake, S.

S. Uetake, M. Katsmagawa, M. Suznki, and K. Haknta, “Stimulated Raman scattering in a liquid-hydrogen droplet,” Phys. Rev. A 61, 011803 (2000).
[CrossRef]

Xia, Y. J.

X. Y. Pu, Y. J. Xia, and W. K. Lee, “Reduction of lasing threshold by deforming a circular resonator,” Chin. Phys. Lett. 19, 500–503 (2002).
[CrossRef]

Zhang, S.

X. Y. Pu, S. Zhang, C. W. Chan, and W. K. Lee, “Lasing features of dye-doped pendant drops added with polymer particles: spectral blue shift and intensity enhancement,” Chin. Phys. 11, 1179–1183 (2002).
[CrossRef]

Anal. Chem. (1)

S. Schlücher, V. E. Roman, W. Kiefer, and J. Popp, “Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy,” Anal. Chem. 73, 3146–3152 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

M. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, “Efficient pumping of minority species stimulated Raman (SRS) by majority species SRS in a microdroplets of a binary mixture,” Chem. Phys. Lett. 239, 361–368 (1995).
[CrossRef]

Chin. Phys. (1)

X. Y. Pu, S. Zhang, C. W. Chan, and W. K. Lee, “Lasing features of dye-doped pendant drops added with polymer particles: spectral blue shift and intensity enhancement,” Chin. Phys. 11, 1179–1183 (2002).
[CrossRef]

Chin. Phys. Lett. (1)

X. Y. Pu, Y. J. Xia, and W. K. Lee, “Reduction of lasing threshold by deforming a circular resonator,” Chin. Phys. Lett. 19, 500–503 (2002).
[CrossRef]

J. Mol. Struct. (1)

J. Popp and V. E. Roman, “Species detection in single microparticles using nonlinear Raman scattering,” J. Mol. Struct. 480, 323–327 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (5)

Phys. Rev. A (1)

S. Uetake, M. Katsmagawa, M. Suznki, and K. Haknta, “Stimulated Raman scattering in a liquid-hydrogen droplet,” Phys. Rev. A 61, 011803 (2000).
[CrossRef]

Science (1)

S. X. Qian, J. B. Snow, H. K. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
[CrossRef] [PubMed]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 10, pp. 141–186.

B. Schrader and W. Meier, Raman-Infrared Atlas of Organic Compounds, Spectrum A 3–11 (Verlag Chemie, Weinheim, Germany, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: F1, variable neutral-density filter; B.S., beam splitter; L1, L2, cylindrical lenses; PM, laser powermeter; F2, long-pass color filter; L3, spherical lens; OMA, optical multichannel analyzer.

Fig. 2
Fig. 2

SRS of ethanol for pumping intensities of 3.9×106, 5.5×107, 1.2×108, and 3.9×106 W/cm2 for a, b, c, and d, respectively. The dye concentration was fixed at 3.05×10-5 M.

Fig. 3
Fig. 3

SRS of ethanol with concentrations of Rhodamine 640 in ethanol of 0, 1.51×10-6, 1.52×10-5, and 6.04×10-5 M for a, b, c, and d, respectively. Pumping intensity was fixed at Ip=2.3×108 W/cm2.

Fig. 4
Fig. 4

SRS of methanol–ethanol mixtures for methanol–ethanol ratios of 1:1, 1:2, 1:5, and 1:19 for a, b, c, and d, respectively. The dye concentration for c and d was 3.05×10-5 M, and there was no dye for a and b. The pumping intensity was fixed at 2.3×108 W/cm2.

Fig. 5
Fig. 5

SRS of ethanol–water mixtures for ethanol–water ratios of 3:7 and 3:17 for a and b, respectively. Pumping intensity was fixed at 2.3×108 W/cm2.

Fig. 6
Fig. 6

SRS of ethanol–water mixtures for ethanol–water ratios 1:49 for a, 1:19 for b, and 1:9 for c. The dye concentration was 3.05×10-5 M, and the pumping intensity was fixed at 2.3×108 W/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Is(νs, L)Isn(νs)exp(Gs-α)L,
Is(νs, L)[Isn(νs)+Iseed(νs)]exp(Ipgs-α)L,
Is(νs, L)[Isn(νs)+Iseed(νs)]exp[(Ipgs+Gl-αtot)L].

Metrics