Abstract

The second-harmonic generation of 50-fs Ti:sapphire laser pulses in 1- and 2-mm KDP crystals at 350 mJ of incident energy is measured experimentally and analyzed theoretically. A frequency-conversion efficiency of ∼40% is reached. The limiting influence of self-phase modulation and fundamental phase modulation is demonstrated. The deep modulation of a frequency-doubled spectrum at a high incident intensity is observed. Methods to increase conversion efficiency are proposed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Willson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996).
    [CrossRef] [PubMed]
  2. J.-P. Chambaret, C. Le Blanc, G. Chériaux, P. Curley, G. Darpentigny, P. Rousseau, G. Harmoniaux, A. Antonetti, and F. Salin, “Generation of 25-TW, 32-fs pulses at 10 Hz,” Opt. Lett. 21, 1921–1923 (1996).
    [CrossRef] [PubMed]
  3. M. P. Kalashnikov, P. V. Nickles, G. Kulcsar, H. Schönnagel, W. Sandner, J. P. Chambaret, C. LeBlanc, and A. Mysyrowicz, “Towards 100 TW–10 Hz titanium–sapphire laser facilities: The European FIRE project,” in Inertial Fusion Sciences and Applications 99 (Elsevier, New York, 1999), pp. 691–694.
  4. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate,” Opt. Lett. 23, 1468–1470 (1998).
    [CrossRef]
  5. Y. Wang and R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5645–5649 (1990).
    [CrossRef] [PubMed]
  6. C. Y. Chien, G. Korn, J. S. Coe, J. Squier, and G. Mourou, “Highly efficient second-harmonic generation of ultraintense Nd:glass laser pulses,” Opt. Lett. 20, 353–355 (1995).
    [CrossRef] [PubMed]
  7. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Pulses (American Institute of Physics, New York, 1992).
  8. R. Danielius, A. Piskarskas, P. Di Trapani, A. Andreoni, C. Solcia, and P. Foggi, “Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,” Opt. Lett. 21, 973–975 (1996).
    [CrossRef] [PubMed]
  9. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1999).
  10. T. B. Razumikhina, L. S. Telegin, A. I. Kholodnykh, and A. S. Chirkin, “Three-frequency interactions of high-intensity light waves in media with quadratic and cubic nonlinearities,” Sov. J. Quantum Electron. 14, 1358–1363 (1984).
    [CrossRef]
  11. R. Yu. Orlov, T. Usmanov, and A. S. Chirkin, “Frequency doubling of laser radiation in nonstationary regime,” Sov. Phys. JETP 30, 584–589 (1970).

1998 (1)

1996 (3)

1995 (1)

1990 (1)

Y. Wang and R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5645–5649 (1990).
[CrossRef] [PubMed]

1984 (1)

T. B. Razumikhina, L. S. Telegin, A. I. Kholodnykh, and A. S. Chirkin, “Three-frequency interactions of high-intensity light waves in media with quadratic and cubic nonlinearities,” Sov. J. Quantum Electron. 14, 1358–1363 (1984).
[CrossRef]

1970 (1)

R. Yu. Orlov, T. Usmanov, and A. S. Chirkin, “Frequency doubling of laser radiation in nonstationary regime,” Sov. Phys. JETP 30, 584–589 (1970).

Akahane, Y.

Andreoni, A.

Antonetti, A.

Aoyama, M.

Barty, C. P. J.

Chambaret, J.-P.

Chériaux, G.

Chien, C. Y.

Chirkin, A. S.

T. B. Razumikhina, L. S. Telegin, A. I. Kholodnykh, and A. S. Chirkin, “Three-frequency interactions of high-intensity light waves in media with quadratic and cubic nonlinearities,” Sov. J. Quantum Electron. 14, 1358–1363 (1984).
[CrossRef]

R. Yu. Orlov, T. Usmanov, and A. S. Chirkin, “Frequency doubling of laser radiation in nonstationary regime,” Sov. Phys. JETP 30, 584–589 (1970).

Coe, J. S.

Curley, P.

Danielius, R.

Darpentigny, G.

Di Trapani, P.

Dragila, R.

Y. Wang and R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5645–5649 (1990).
[CrossRef] [PubMed]

Foggi, P.

Guo, T.

Harmoniaux, G.

Kase, T.

Kholodnykh, A. I.

T. B. Razumikhina, L. S. Telegin, A. I. Kholodnykh, and A. S. Chirkin, “Three-frequency interactions of high-intensity light waves in media with quadratic and cubic nonlinearities,” Sov. J. Quantum Electron. 14, 1358–1363 (1984).
[CrossRef]

Korn, G.

Le Blanc, C.

Matsuoka, S.

Mourou, G.

Orlov, R. Yu.

R. Yu. Orlov, T. Usmanov, and A. S. Chirkin, “Frequency doubling of laser radiation in nonstationary regime,” Sov. Phys. JETP 30, 584–589 (1970).

Piskarskas, A.

Raksi, F.

Razumikhina, T. B.

T. B. Razumikhina, L. S. Telegin, A. I. Kholodnykh, and A. S. Chirkin, “Three-frequency interactions of high-intensity light waves in media with quadratic and cubic nonlinearities,” Sov. J. Quantum Electron. 14, 1358–1363 (1984).
[CrossRef]

Rose-Petruck, C.

Rousseau, P.

Salin, F.

Solcia, C.

Squier, J.

Takuma, H.

Telegin, L. S.

T. B. Razumikhina, L. S. Telegin, A. I. Kholodnykh, and A. S. Chirkin, “Three-frequency interactions of high-intensity light waves in media with quadratic and cubic nonlinearities,” Sov. J. Quantum Electron. 14, 1358–1363 (1984).
[CrossRef]

Usmanov, T.

R. Yu. Orlov, T. Usmanov, and A. S. Chirkin, “Frequency doubling of laser radiation in nonstationary regime,” Sov. Phys. JETP 30, 584–589 (1970).

Wang, Y.

Y. Wang and R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5645–5649 (1990).
[CrossRef] [PubMed]

Willson, K. R.

Yakovlev, V. V.

Yamakawa, K.

Opt. Lett. (5)

Phys. Rev. A (1)

Y. Wang and R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5645–5649 (1990).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

T. B. Razumikhina, L. S. Telegin, A. I. Kholodnykh, and A. S. Chirkin, “Three-frequency interactions of high-intensity light waves in media with quadratic and cubic nonlinearities,” Sov. J. Quantum Electron. 14, 1358–1363 (1984).
[CrossRef]

Sov. Phys. JETP (1)

R. Yu. Orlov, T. Usmanov, and A. S. Chirkin, “Frequency doubling of laser radiation in nonstationary regime,” Sov. Phys. JETP 30, 584–589 (1970).

Other (3)

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Pulses (American Institute of Physics, New York, 1992).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1999).

M. P. Kalashnikov, P. V. Nickles, G. Kulcsar, H. Schönnagel, W. Sandner, J. P. Chambaret, C. LeBlanc, and A. Mysyrowicz, “Towards 100 TW–10 Hz titanium–sapphire laser facilities: The European FIRE project,” in Inertial Fusion Sciences and Applications 99 (Elsevier, New York, 1999), pp. 691–694.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence of frequency-doubling efficiency on incident energy in (a) 1-mm and (b) 2-mm KDP crystals.

Fig. 2
Fig. 2

Angular dependence of frequency-doubling efficiency in a 1-mm KDP crystal at 2-mJ (curve 1) and 130-mJ (curve 2) incident energy.

Fig. 3
Fig. 3

Spectral distribution of fundamental and second-harmonic radiation. (a) The spectral distributions of the fundamental radiation at low (1) and high (2) energies. (b) and (c) Experimental spectral distributions of the harmonic radiation at low and high fundamental radiation energies in 1-mm (1) and 2-mm (2) crystals, respectively. (d) The corresponding calculated dependence for high fundamental energies in 1-mm (1) and 2-mm (2) crystals. Low levels correspond to <10 mJ; high levels correspond to ∼200 mJ of incident energy.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z+1u1t-iD1 2t2E1=-iσ1E2E1*exp(iΔkz)-iσ11|E1|2E1-iσ12|E2|2E1-γ1E1,
z+1u2t-iD2 2t2E2=-iσ2E12 exp(-iΔkz)-iσ21|E1|2E2-iσ22|E2|2E2-γ2E2,

Metrics