Abstract

We report what is, to the best of our knowledge, the first observation of transient spectral hole burning in erbium-doped fluorozirconate glass around 1.53 µm. Holes deeper than 12% were burnt. A study of the hole width as a function of power density, wavelength, temperature, and erbium concentration has been performed and underlines the role of spectral diffusion. Dynamics of refilling of the holes, involving optical pumping of the long-lived  4I13/2 excited state, was also investigated. The nearly linear temperature dependence of the hole width behaves as reported for other rare-earth ions and is interpreted within the framework of the two-level systems theory. Hole-refilling dynamics has been studied for three different erbium concentrations and is used to interpret the origin of the saturation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. MacFarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
    [CrossRef]
  2. E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley Interscience, New York, 2002).
  3. R. M. MacFarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
    [CrossRef]
  4. T. Schmidt, R. M. Macfarlane, and S. Volker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707–15718 (1994).
    [CrossRef]
  5. M. Nogami and T. Hayakawa, “Persistent spectral hole burning of sol-gel-derived Eu3+-doped SiO2 glass,” Phys. Rev. B 56, R14235–R14238 (1997).
    [CrossRef]
  6. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glasses,” Opt. Lett. 23, 543–545 (1998).
    [CrossRef]
  7. P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
    [CrossRef]
  8. R. M. MacFarlane and B. Jacquier, “Spectral holeburning of Nd3+ doped heavy metal fluoride glasses,” J. Non-Cryst. Solids 161, 254–256 (1993).
    [CrossRef]
  9. W. S. Brocklesby, B. Golding, and J. R. Simpson, “Absorption fluctuations and persistent spectral hole burning in a Nd3+-doped glass waveguide,” Phys. Rev. Lett. 63, 1833–1836 (1989).
    [CrossRef] [PubMed]
  10. B. Jacquier, R. M. MacFarlane, and A. M. Jurdyc, “Spectral hole-burning of Nd3+ doped germanosilicate fiber,” J. Phys. III 5, 219–224 (1995).
  11. Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
    [CrossRef]
  12. M. Nogami, T. Nagakura, and T. Hayakawa, “Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3—SiO2 glasses,” J. Lumin. 86, 117–123 (2000).
    [CrossRef]
  13. M. Nogami, “Persistent spectral hole burning of Sm2+ and Eu3+ ions in sol-gel derived glasses,” J. Non-Cryst. Solids 259, 170–175 (1999).
    [CrossRef]
  14. K. Fujita, K. Nouchi, and K. Hirao, “Local structure and persistent hole burning of Sm2+ in silica-based fibers,” J. Lumin. 86, 305–310 (2000).
    [CrossRef]
  15. D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
    [CrossRef]
  16. K. Hirao, S. Todoroki, and N. Soga, “Room-temperature persistent hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217–219 (1993).
    [CrossRef]
  17. A. Pearson and W. S. Brocklesby, “Hole burning studies of Pr3+-doped fluoride and chalcogenide glasses,” J. Lumin. 60–61, 208–211 (1994).
    [CrossRef]
  18. R. J. Wannemacher, M. A. Koedijk, and S. Volker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437–440 (1994).
    [CrossRef]
  19. J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990).
    [CrossRef]
  20. E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
    [CrossRef]
  21. S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992).
    [CrossRef]
  22. L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
    [CrossRef]
  23. L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003).
    [CrossRef]
  24. A. Szabo, “Observation of hole burning and cross relaxation effects in ruby,” Phys. Rev. B 11, 4512–4517 (1975).
    [CrossRef]
  25. P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
    [CrossRef]
  26. T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
    [CrossRef]
  27. V. L. Da Silva, Y. Silberberg, J. P. Heritage, E. W. Chase, M. A. Saifi, M. J. Andrejco, and A. Yi-Yan, “Photon-echoes in Er-doped fibers,” presented at the Quantum Electronics and Lasers Science Conference, Anaheim, Calif. May, 10–15, 1992.
  28. S. Guy, L. Bigot, I. Vasilief, B. Jacquier, B. Boulard, and Y. Gao, “Two crystallographic sites in erbium-doped fluoride glass by frequency-resolved and site-selective spectroscopies,” J. Non-Cryst. Solids.
  29. P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
    [CrossRef]
  30. J. C. Lasjaunias and M. A. Grosdemouge, “Low-temperature specific heat of two fluorozirconate glasses,” J. Non-Cryst. Solids 54, 183–186 (1983).
    [CrossRef]

2003

L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003).
[CrossRef]

2002

L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
[CrossRef]

2001

P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
[CrossRef]

2000

K. Fujita, K. Nouchi, and K. Hirao, “Local structure and persistent hole burning of Sm2+ in silica-based fibers,” J. Lumin. 86, 305–310 (2000).
[CrossRef]

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

M. Nogami, T. Nagakura, and T. Hayakawa, “Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3—SiO2 glasses,” J. Lumin. 86, 117–123 (2000).
[CrossRef]

1999

M. Nogami, “Persistent spectral hole burning of Sm2+ and Eu3+ ions in sol-gel derived glasses,” J. Non-Cryst. Solids 259, 170–175 (1999).
[CrossRef]

1998

1997

M. Nogami and T. Hayakawa, “Persistent spectral hole burning of sol-gel-derived Eu3+-doped SiO2 glass,” Phys. Rev. B 56, R14235–R14238 (1997).
[CrossRef]

1996

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
[CrossRef]

1995

B. Jacquier, R. M. MacFarlane, and A. M. Jurdyc, “Spectral hole-burning of Nd3+ doped germanosilicate fiber,” J. Phys. III 5, 219–224 (1995).

1994

A. Pearson and W. S. Brocklesby, “Hole burning studies of Pr3+-doped fluoride and chalcogenide glasses,” J. Lumin. 60–61, 208–211 (1994).
[CrossRef]

R. J. Wannemacher, M. A. Koedijk, and S. Volker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437–440 (1994).
[CrossRef]

T. Schmidt, R. M. Macfarlane, and S. Volker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707–15718 (1994).
[CrossRef]

T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
[CrossRef]

1993

K. Hirao, S. Todoroki, and N. Soga, “Room-temperature persistent hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217–219 (1993).
[CrossRef]

R. M. MacFarlane and B. Jacquier, “Spectral holeburning of Nd3+ doped heavy metal fluoride glasses,” J. Non-Cryst. Solids 161, 254–256 (1993).
[CrossRef]

1992

S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992).
[CrossRef]

1990

P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
[CrossRef]

J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990).
[CrossRef]

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

1989

W. S. Brocklesby, B. Golding, and J. R. Simpson, “Absorption fluctuations and persistent spectral hole burning in a Nd3+-doped glass waveguide,” Phys. Rev. Lett. 63, 1833–1836 (1989).
[CrossRef] [PubMed]

1987

R. M. MacFarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[CrossRef]

1983

R. M. MacFarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

J. C. Lasjaunias and M. A. Grosdemouge, “Low-temperature specific heat of two fluorozirconate glasses,” J. Non-Cryst. Solids 54, 183–186 (1983).
[CrossRef]

1975

A. Szabo, “Observation of hole burning and cross relaxation effects in ruby,” Phys. Rev. B 11, 4512–4517 (1975).
[CrossRef]

1972

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Adam, J.-L.

L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003).
[CrossRef]

Anderson, P. W.

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Arvanitidis, J.

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

Baak, J.

T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
[CrossRef]

Bayart, D.

L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
[CrossRef]

Beck, W.

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

Bigot, L.

L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003).
[CrossRef]

L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
[CrossRef]

Borik, M. A.

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

Bottger, T.

P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
[CrossRef]

Brocklesby, W. S.

A. Pearson and W. S. Brocklesby, “Hole burning studies of Pr3+-doped fluoride and chalcogenide glasses,” J. Lumin. 60–61, 208–211 (1994).
[CrossRef]

W. S. Brocklesby, B. Golding, and J. R. Simpson, “Absorption fluctuations and persistent spectral hole burning in a Nd3+-doped glass waveguide,” Phys. Rev. Lett. 63, 1833–1836 (1989).
[CrossRef] [PubMed]

Brom, H. B.

T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
[CrossRef]

Bruce, A.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
[CrossRef]

Carlsten, J. L.

P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
[CrossRef]

Cone, R. L.

P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
[CrossRef]

Desurvire, E.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990).
[CrossRef]

Di Giovanni, D. J.

J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990).
[CrossRef]

Flytzanis, C.

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

Fotteler, T.

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

Fujita, K.

K. Fujita, K. Nouchi, and K. Hirao, “Local structure and persistent hole burning of Sm2+ in silica-based fibers,” J. Lumin. 86, 305–310 (2000).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glasses,” Opt. Lett. 23, 543–545 (1998).
[CrossRef]

Gasca, L.

L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
[CrossRef]

Gavrilovic, P.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
[CrossRef]

Golding, B.

W. S. Brocklesby, B. Golding, and J. R. Simpson, “Absorption fluctuations and persistent spectral hole burning in a Nd3+-doped glass waveguide,” Phys. Rev. Lett. 63, 1833–1836 (1989).
[CrossRef] [PubMed]

Grodkiewicz, W. H.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
[CrossRef]

Grosdemouge, M. A.

J. C. Lasjaunias and M. A. Grosdemouge, “Low-temperature specific heat of two fluorozirconate glasses,” J. Non-Cryst. Solids 54, 183–186 (1983).
[CrossRef]

Halperin, B. I.

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Hayakawa, T.

M. Nogami, T. Nagakura, and T. Hayakawa, “Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3—SiO2 glasses,” J. Lumin. 86, 117–123 (2000).
[CrossRef]

M. Nogami and T. Hayakawa, “Persistent spectral hole burning of sol-gel-derived Eu3+-doped SiO2 glass,” Phys. Rev. B 56, R14235–R14238 (1997).
[CrossRef]

Hirao, K.

K. Fujita, K. Nouchi, and K. Hirao, “Local structure and persistent hole burning of Sm2+ in silica-based fibers,” J. Lumin. 86, 305–310 (2000).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glasses,” Opt. Lett. 23, 543–545 (1998).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room-temperature persistent hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217–219 (1993).
[CrossRef]

Jacquier, B.

L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003).
[CrossRef]

L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
[CrossRef]

B. Jacquier, R. M. MacFarlane, and A. M. Jurdyc, “Spectral hole-burning of Nd3+ doped germanosilicate fiber,” J. Phys. III 5, 219–224 (1995).

R. M. MacFarlane and B. Jacquier, “Spectral holeburning of Nd3+ doped heavy metal fluoride glasses,” J. Non-Cryst. Solids 161, 254–256 (1993).
[CrossRef]

Jurdyc, A. M.

B. Jacquier, R. M. MacFarlane, and A. M. Jurdyc, “Spectral hole-burning of Nd3+ doped germanosilicate fiber,” J. Phys. III 5, 219–224 (1995).

Jurdyc, A.-M.

L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003).
[CrossRef]

Jurdyc, A-M.

L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
[CrossRef]

Karasik, A. Y.

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

Koedijk, M. A.

R. J. Wannemacher, M. A. Koedijk, and S. Volker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437–440 (1994).
[CrossRef]

Lambert, G.

S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992).
[CrossRef]

Lasjaunias, J. C.

J. C. Lasjaunias and M. A. Grosdemouge, “Low-temperature specific heat of two fluorozirconate glasses,” J. Non-Cryst. Solids 54, 183–186 (1983).
[CrossRef]

MacFarlane, R. M.

B. Jacquier, R. M. MacFarlane, and A. M. Jurdyc, “Spectral hole-burning of Nd3+ doped germanosilicate fiber,” J. Phys. III 5, 219–224 (1995).

T. Schmidt, R. M. Macfarlane, and S. Volker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707–15718 (1994).
[CrossRef]

R. M. MacFarlane and B. Jacquier, “Spectral holeburning of Nd3+ doped heavy metal fluoride glasses,” J. Non-Cryst. Solids 161, 254–256 (1993).
[CrossRef]

P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
[CrossRef]

R. M. MacFarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[CrossRef]

R. M. MacFarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

Mao, Y.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
[CrossRef]

Miniscalco, W. J.

S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992).
[CrossRef]

Nagakura, T.

M. Nogami, T. Nagakura, and T. Hayakawa, “Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3—SiO2 glasses,” J. Lumin. 86, 117–123 (2000).
[CrossRef]

Nogami, M.

M. Nogami, T. Nagakura, and T. Hayakawa, “Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3—SiO2 glasses,” J. Lumin. 86, 117–123 (2000).
[CrossRef]

M. Nogami, “Persistent spectral hole burning of Sm2+ and Eu3+ ions in sol-gel derived glasses,” J. Non-Cryst. Solids 259, 170–175 (1999).
[CrossRef]

M. Nogami and T. Hayakawa, “Persistent spectral hole burning of sol-gel-derived Eu3+-doped SiO2 glass,” Phys. Rev. B 56, R14235–R14238 (1997).
[CrossRef]

Nouchi, K.

K. Fujita, K. Nouchi, and K. Hirao, “Local structure and persistent hole burning of Sm2+ in silica-based fibers,” J. Lumin. 86, 305–310 (2000).
[CrossRef]

Pearson, A.

A. Pearson and W. S. Brocklesby, “Hole burning studies of Pr3+-doped fluoride and chalcogenide glasses,” J. Lumin. 60–61, 208–211 (1994).
[CrossRef]

Ricard, D.

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

Schmidt, T.

T. Schmidt, R. M. Macfarlane, and S. Volker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707–15718 (1994).
[CrossRef]

T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
[CrossRef]

P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
[CrossRef]

Schokker, B. C.

P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
[CrossRef]

Sellin, P. B.

P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
[CrossRef]

Shelby, R. M.

R. M. MacFarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[CrossRef]

R. M. MacFarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

Simpson, J. R.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

W. S. Brocklesby, B. Golding, and J. R. Simpson, “Absorption fluctuations and persistent spectral hole burning in a Nd3+-doped glass waveguide,” Phys. Rev. Lett. 63, 1833–1836 (1989).
[CrossRef] [PubMed]

Singh, S.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
[CrossRef]

Soga, N.

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glasses,” Opt. Lett. 23, 543–545 (1998).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room-temperature persistent hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217–219 (1993).
[CrossRef]

Strickland, N. M.

P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
[CrossRef]

Sulhoff, J. W.

J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990).
[CrossRef]

Szabo, A.

A. Szabo, “Observation of hole burning and cross relaxation effects in ruby,” Phys. Rev. B 11, 4512–4517 (1975).
[CrossRef]

Tanaka, K.

Thompson, B. A.

S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992).
[CrossRef]

Todoroki, S.

K. Hirao, S. Todoroki, and N. Soga, “Room-temperature persistent hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217–219 (1993).
[CrossRef]

van de Straat, D. A.

T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
[CrossRef]

Van der Zaag, P. J.

P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
[CrossRef]

Varma, C. M.

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Volker, S.

T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
[CrossRef]

T. Schmidt, R. M. Macfarlane, and S. Volker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707–15718 (1994).
[CrossRef]

R. J. Wannemacher, M. A. Koedijk, and S. Volker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437–440 (1994).
[CrossRef]

P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
[CrossRef]

Wannemacher, R. J.

R. J. Wannemacher, M. A. Koedijk, and S. Volker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437–440 (1994).
[CrossRef]

Zemon, S.

S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992).
[CrossRef]

Zyskind, J. L.

J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990).
[CrossRef]

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

Appl. Phys. Lett.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677–3679 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous line width by spectral hole burning in an erbium-doped fiber with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990).
[CrossRef]

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

J. Lumin.

M. Nogami, T. Nagakura, and T. Hayakawa, “Site-dependent fluorescence and hole-burning spectra of Eu3+-doped Al2O3—SiO2 glasses,” J. Lumin. 86, 117–123 (2000).
[CrossRef]

P. J. Van der Zaag, B. C. Schokker, T. Schmidt, R. M. Macfarlane, and S. Volker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80–82 (1990).
[CrossRef]

K. Fujita, K. Nouchi, and K. Hirao, “Local structure and persistent hole burning of Sm2+ in silica-based fibers,” J. Lumin. 86, 305–310 (2000).
[CrossRef]

D. Ricard, W. Beck, A. Y. Karasik, M. A. Borik, J. Arvanitidis, T. Fotteler, and C. Flytzanis, “Room-temperature persistent hole burning in Eu3+-doped inorganic glasses: the mechanisms,” J. Lumin. 86, 317–322 (2000).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room-temperature persistent hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217–219 (1993).
[CrossRef]

A. Pearson and W. S. Brocklesby, “Hole burning studies of Pr3+-doped fluoride and chalcogenide glasses,” J. Lumin. 60–61, 208–211 (1994).
[CrossRef]

R. J. Wannemacher, M. A. Koedijk, and S. Volker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437–440 (1994).
[CrossRef]

R. M. MacFarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[CrossRef]

J. Non-Cryst. Solids

J. C. Lasjaunias and M. A. Grosdemouge, “Low-temperature specific heat of two fluorozirconate glasses,” J. Non-Cryst. Solids 54, 183–186 (1983).
[CrossRef]

R. M. MacFarlane and B. Jacquier, “Spectral holeburning of Nd3+ doped heavy metal fluoride glasses,” J. Non-Cryst. Solids 161, 254–256 (1993).
[CrossRef]

M. Nogami, “Persistent spectral hole burning of Sm2+ and Eu3+ ions in sol-gel derived glasses,” J. Non-Cryst. Solids 259, 170–175 (1999).
[CrossRef]

J. Phys. III

B. Jacquier, R. M. MacFarlane, and A. M. Jurdyc, “Spectral hole-burning of Nd3+ doped germanosilicate fiber,” J. Phys. III 5, 219–224 (1995).

Opt. Commun.

R. M. MacFarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

Opt. Lett.

Opt. Mater.

L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, “Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,” Opt. Mater. 24, 97–102 (2003).
[CrossRef]

Philos. Mag.

P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1–9 (1972).
[CrossRef]

Phys. Rev. B

L. Bigot, A-M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002).
[CrossRef]

A. Szabo, “Observation of hole burning and cross relaxation effects in ruby,” Phys. Rev. B 11, 4512–4517 (1975).
[CrossRef]

P. B. Sellin, N. M. Strickland, T. Bottger, J. L. Carlsten, and R. L. Cone, “Laser stabilization at 1536 nm using regenerative hole burning,” Phys. Rev. B 63, 155111 (2001).
[CrossRef]

T. Schmidt, R. M. Macfarlane, and S. Volker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707–15718 (1994).
[CrossRef]

M. Nogami and T. Hayakawa, “Persistent spectral hole burning of sol-gel-derived Eu3+-doped SiO2 glass,” Phys. Rev. B 56, R14235–R14238 (1997).
[CrossRef]

Phys. Rev. Lett.

T. Schmidt, J. Baak, D. A. van de Straat, H. B. Brom, and S. Volker, “Temperature dependence of optical linewidths and specific heat of rare-earth-doped silicate glasses,” Phys. Rev. Lett. 71, 3031–3034 (1994).
[CrossRef]

W. S. Brocklesby, B. Golding, and J. R. Simpson, “Absorption fluctuations and persistent spectral hole burning in a Nd3+-doped glass waveguide,” Phys. Rev. Lett. 63, 1833–1836 (1989).
[CrossRef] [PubMed]

Proc. SPIE

S. Zemon, G. Lambert, W. J. Miniscalco, and B. A. Thompson, “Homogeneous line widths in Er3+-doped glasses measured by resonance fluorescence line narrowing,” in Proceedings of Fiber Laser Sources and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 91–100 (1992).
[CrossRef]

Other

V. L. Da Silva, Y. Silberberg, J. P. Heritage, E. W. Chase, M. A. Saifi, M. J. Andrejco, and A. Yi-Yan, “Photon-echoes in Er-doped fibers,” presented at the Quantum Electronics and Lasers Science Conference, Anaheim, Calif. May, 10–15, 1992.

S. Guy, L. Bigot, I. Vasilief, B. Jacquier, B. Boulard, and Y. Gao, “Two crystallographic sites in erbium-doped fluoride glass by frequency-resolved and site-selective spectroscopies,” J. Non-Cryst. Solids.

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley Interscience, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental pump–probe setup used to record holes. The absorption around the pump wavelength is probed recording the forward transmitted intensity of the probe beam. The upconversion fluorescence at 980 nm is detected perpendicularly to ensure the optimum overlap of pump and probe beams.

Fig. 2
Fig. 2

Example of a spectral hole obtained for the 0.5-mol.% erbium-doped ZBLA glass at T=1.5 K. The pump wavelength is 1530 nm, and the pump power density is around 5.4 W/cm2. The points represent the experimental data (transmitted intensity of the probe beam), and the curve is a Lorentzian fit.

Fig. 3
Fig. 3

Evolution of the hole depth as a function of power density for ZBLA 0.5 mol.%. The measurement is made at 1.5 K, and the pump wavelength is 1530 nm.

Fig. 4
Fig. 4

Evolution of the hole width as a function of pump power for ZBLA 0.05 mol.% and ZBLA 0.5 mol.%. The measurement is made at 1.5 K, and the pump wavelength is 1530 nm. A curve and line have been drawn as guides for the eye.

Fig. 5
Fig. 5

Evolution of the hole width across the whole site distribution in the case of ZBLA 0.5 mol.%. Power density is fixed at 21 W/cm2, and the temperature is equal to 1.5 K. Holes have been burnt in the two sites that compose the site distribution of erbium in ZBLA. Site A (longer wavelengths) corresponds to the majority site, and site B corresponds to the minority one.

Fig. 6
Fig. 6

Schematic representation of the protocol used to record hole dynamics. The dephasing between the probe and the pump is adjusted by modification of the relative position of the two beams onto the chopper. The refilling dynamics of the hole appears in the evolution of the intensity of the probe beam without pumping.

Fig. 7
Fig. 7

Refilling dynamics of the hole obtained for ZBLA 0.05-mol.%, ZBLA 0.5-mol.%, and ZBLA 1-mol.% samples. The measurements were made at 1.5 K with the same saturating power density at 1532 nm. The decay times are extracted from a single exponential fit. Data have been shifted for more visibility.

Fig. 8
Fig. 8

Evolution of the hole width with temperature for ZBLA 0.05-mol.% and ZBLA 0.1-mol.% samples. The points represent the experimental data, and the line is the fitting function indicated in the inset of data obtained for ZBLA 0.1 mol.%.

Tables (1)

Tables Icon

Table 1 Comparison of Hole-Refilling Dynamics and  4I13/2 Lifetime in Erbium-Doped ZBLA Glasses

Metrics