Abstract

End-pumped alkali vapor lasers excited on their D2 transition and lased on their D1 transition offer a pathway to high average power that potentially competes with diode-pumped solid-state lasers in many applications that require cw or quasi-cw laser operation. We report on the first experimental demonstration of an end-pumped Cs laser using a Ti:sapphire laser for pump excitation. Detailed experimental and model results are presented that indicate our understanding of the underlying physics involved in such systems is complete. Using an extrapolation of our developed model, a discussion is given on power scaling diode-pumped alkali lasers, indicating a potential efficiency advantage over power-scaled diode-pumped solid-state lasers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003).
    [CrossRef] [PubMed]
  2. Z. Konefal, “Observation of collision induced processes in rubidium–ethane vapour,” Opt. Commun. 164, 95–105 (1999).
    [CrossRef]
  3. W. F. Krupke, “Diode-pumped alkali laser,” U.S. patent 6, 634, 311 (November 4, 2003).
  4. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
    [CrossRef] [PubMed]
  5. M. T. Jacoby, D. G. Harris, J. A. Goldstone, J. Stone, and R. Whitley, “Coherent two-photon excitation of alkali metal vapors,” in Proceedings of International Conference on Lasers ’89, D. G. Harris and T. M. Shay, eds. (STS Press, McLean, Va., 1990), pp. 826–831.
  6. M. T. Jacoby, D. G. Harris, J. Stone, and J. A. Goldstone, “Lithium upconversion laser at 323 nm by near resonance two photon pumping,” in Proceedings of International Conference on Lasers ’91, F. J. Duarte and D. G. Harris, eds. (STS Press, McLean, Va., 1992), pp. 993–998.
  7. D. A. Steck, “Cesium D line data,” available online at http://steck.us/alkalidata; extensive, periodically updated compilation of atomic data relevant to quantum optics and atom optics experiments involving cesium, along with a thorough and consistent theoretical framework for the tabulated quantities.
  8. E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).
  9. A. Andalkar and R. B. Warrington, “High-resolution measurement of the pressure broadening and shift of the Cs D1 and D2 lines by N2 and He buffer gases,” Phys. Rev. A 65, 032708 (2002).
    [CrossRef]
  10. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1996).
    [CrossRef]
  11. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).
  12. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
    [CrossRef]
  13. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monro, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
    [CrossRef]
  14. E. Speller, B. Staudenmayer, and V. Kempter, “Quenching cross sections for alkali-inert gas collisions,” Z. Phys. A 291, 311–318 (1979).
    [CrossRef]
  15. B. Pitre, A. G. A. Rae, and L. Krause, “Sensitized fluorescence in vapors of alkali metals. VI. Energy transfer in collisions between rubidium and inert gas atoms,” Can. J. Phys. 44, 731–737 (1966).
    [CrossRef]
  16. J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
    [CrossRef]
  17. R. C. Weast, ed., Handbook of Chemistry and Physics, 67th ed. (CRC Press, Boca Raton, Fla., 1986), p. E-374.
  18. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley, Reading, Mass., 1963), Eq. 31.19
  19. N. Hodgson, S. Dong, and Q. Lü, “Performance of a 2.3 kW Nd:YAG slab laser system,” Opt. Lett. 18, 1727–1729 (1993).
    [CrossRef] [PubMed]
  20. B. L. Volodin, S. V. Dolgy, E. Downs, E. D. Melnik, V. S. Ban, and E. McIntyre, “Upgrading performance of high power laser diodes and arrays with LuxxMasterTM wavelength stabilization,” http://www.pd-ld.com/pdf/ ElectroOpticsLuxxMasterw91903.pdf
  21. M. V. Romalis, E. Miron, and G. D. Gates, “Pressure broadening of the Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
    [CrossRef]
  22. E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
    [CrossRef]

2003 (1)

2002 (1)

A. Andalkar and R. B. Warrington, “High-resolution measurement of the pressure broadening and shift of the Cs D1 and D2 lines by N2 and He buffer gases,” Phys. Rev. A 65, 032708 (2002).
[CrossRef]

2000 (1)

1999 (1)

Z. Konefal, “Observation of collision induced processes in rubidium–ethane vapour,” Opt. Commun. 164, 95–105 (1999).
[CrossRef]

1997 (1)

M. V. Romalis, E. Miron, and G. D. Gates, “Pressure broadening of the Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[CrossRef]

1996 (1)

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1996).
[CrossRef]

1995 (1)

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

1993 (1)

1988 (1)

1987 (1)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

1984 (1)

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

1979 (1)

E. Speller, B. Staudenmayer, and V. Kempter, “Quenching cross sections for alkali-inert gas collisions,” Z. Phys. A 291, 311–318 (1979).
[CrossRef]

1974 (1)

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

1970 (1)

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

1966 (1)

B. Pitre, A. G. A. Rae, and L. Krause, “Sensitized fluorescence in vapors of alkali metals. VI. Energy transfer in collisions between rubidium and inert gas atoms,” Can. J. Phys. 44, 731–737 (1966).
[CrossRef]

Andalkar, A.

A. Andalkar and R. B. Warrington, “High-resolution measurement of the pressure broadening and shift of the Cs D1 and D2 lines by N2 and He buffer gases,” Phys. Rev. A 65, 032708 (2002).
[CrossRef]

Avizonis, P. V.

Beach, R. J.

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Dong, S.

Emanuel, M. A.

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Gates, G. D.

M. V. Romalis, E. Miron, and G. D. Gates, “Pressure broadening of the Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[CrossRef]

Harris, D. G.

Hodgson, N.

Hollberg, L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Honea, E. C.

Hrycyshyn, E. S.

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

Kanz, V. K.

Kempter, V.

E. Speller, B. Staudenmayer, and V. Kempter, “Quenching cross sections for alkali-inert gas collisions,” Z. Phys. A 291, 311–318 (1979).
[CrossRef]

Kestin, J.

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

Knierim, K.

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

Konefal, Z.

Z. Konefal, “Observation of collision induced processes in rubidium–ethane vapour,” Opt. Commun. 164, 95–105 (1999).
[CrossRef]

Krause, L.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

B. Pitre, A. G. A. Rae, and L. Krause, “Sensitized fluorescence in vapors of alkali metals. VI. Energy transfer in collisions between rubidium and inert gas atoms,” Can. J. Phys. 44, 731–737 (1966).
[CrossRef]

Krupke, W. F.

Lü, Q.

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Mason, E. A.

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

Miron, E.

M. V. Romalis, E. Miron, and G. D. Gates, “Pressure broadening of the Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[CrossRef]

Mitchell, S. C.

Monro, R. S.

Najafi, B.

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

Nikonov, D. E.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Payne, S. A.

Phaneuf, R. A.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Pitre, B.

B. Pitre, A. G. A. Rae, and L. Krause, “Sensitized fluorescence in vapors of alkali metals. VI. Energy transfer in collisions between rubidium and inert gas atoms,” Can. J. Phys. 44, 731–737 (1966).
[CrossRef]

Rae, A. G. A.

B. Pitre, A. G. A. Rae, and L. Krause, “Sensitized fluorescence in vapors of alkali metals. VI. Energy transfer in collisions between rubidium and inert gas atoms,” Can. J. Phys. 44, 731–737 (1966).
[CrossRef]

Risk, W. P.

Ro, S. T.

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

Robinson, H. G.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Romalis, M. V.

M. V. Romalis, E. Miron, and G. D. Gates, “Pressure broadening of the Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[CrossRef]

Scully, M. O.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Skidmore, J. A.

Speller, E.

E. Speller, B. Staudenmayer, and V. Kempter, “Quenching cross sections for alkali-inert gas collisions,” Z. Phys. A 291, 311–318 (1979).
[CrossRef]

Staudenmayer, B.

E. Speller, B. Staudenmayer, and V. Kempter, “Quenching cross sections for alkali-inert gas collisions,” Z. Phys. A 291, 311–318 (1979).
[CrossRef]

Sutton, S. B.

Velichansky, V. L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Waldman, M.

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

Walentynowicz, E.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

Warrington, R. B.

A. Andalkar and R. B. Warrington, “High-resolution measurement of the pressure broadening and shift of the Cs D1 and D2 lines by N2 and He buffer gases,” Phys. Rev. A 65, 032708 (2002).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Can. J. Phys. (3)

E. Walentynowicz, R. A. Phaneuf, and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. X. Temperature dependence of cross sections for 2P3/2-2P1/2 mixing in cesium, induced in collisions with deuterated hydrogens, ethanes, and propanes,” Can. J. Phys. 52, 589–591 (1974).

B. Pitre, A. G. A. Rae, and L. Krause, “Sensitized fluorescence in vapors of alkali metals. VI. Energy transfer in collisions between rubidium and inert gas atoms,” Can. J. Phys. 44, 731–737 (1966).
[CrossRef]

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13, 229–303 (1984).
[CrossRef]

Opt. Commun. (2)

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1996).
[CrossRef]

Z. Konefal, “Observation of collision induced processes in rubidium–ethane vapour,” Opt. Commun. 164, 95–105 (1999).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (2)

A. Andalkar and R. B. Warrington, “High-resolution measurement of the pressure broadening and shift of the Cs D1 and D2 lines by N2 and He buffer gases,” Phys. Rev. A 65, 032708 (2002).
[CrossRef]

M. V. Romalis, E. Miron, and G. D. Gates, “Pressure broadening of the Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Z. Phys. A (1)

E. Speller, B. Staudenmayer, and V. Kempter, “Quenching cross sections for alkali-inert gas collisions,” Z. Phys. A 291, 311–318 (1979).
[CrossRef]

Other (7)

R. C. Weast, ed., Handbook of Chemistry and Physics, 67th ed. (CRC Press, Boca Raton, Fla., 1986), p. E-374.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley, Reading, Mass., 1963), Eq. 31.19

B. L. Volodin, S. V. Dolgy, E. Downs, E. D. Melnik, V. S. Ban, and E. McIntyre, “Upgrading performance of high power laser diodes and arrays with LuxxMasterTM wavelength stabilization,” http://www.pd-ld.com/pdf/ ElectroOpticsLuxxMasterw91903.pdf

M. T. Jacoby, D. G. Harris, J. A. Goldstone, J. Stone, and R. Whitley, “Coherent two-photon excitation of alkali metal vapors,” in Proceedings of International Conference on Lasers ’89, D. G. Harris and T. M. Shay, eds. (STS Press, McLean, Va., 1990), pp. 826–831.

M. T. Jacoby, D. G. Harris, J. Stone, and J. A. Goldstone, “Lithium upconversion laser at 323 nm by near resonance two photon pumping,” in Proceedings of International Conference on Lasers ’91, F. J. Duarte and D. G. Harris, eds. (STS Press, McLean, Va., 1992), pp. 993–998.

D. A. Steck, “Cesium D line data,” available online at http://steck.us/alkalidata; extensive, periodically updated compilation of atomic data relevant to quantum optics and atom optics experiments involving cesium, along with a thorough and consistent theoretical framework for the tabulated quantities.

W. F. Krupke, “Diode-pumped alkali laser,” U.S. patent 6, 634, 311 (November 4, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Energy levels of Cs relevant to a laser demonstration. The laser is pumped on the D2 transition at 852.3 nm by use of a Ti:sapphire laser and lased on the D1 transition at 894.6 nm. He buffer gas is used to broaden the D2 absorption line collisionally and ethane is used to mix the fine-structure levels rapidly (2P1/22P3/2) as described in the text.

Fig. 2
Fig. 2

Schematic diagram of the laser resonator used in our experiments. Optical elements are shaded. The two outer windows on the oven are antireflection coated at the pump and laser wavelengths, but the inner Cs cell windows are uncoated. The pump beam is introduced into the cavity off a polarizer and single passes the laser cavity that propagates with orthogonal polarization to the intracavity laser radiation.

Fig. 3
Fig. 3

Comparison of FWHM. Our pump spectral profile is 2.4× wider than our collisionally broadened Cs D2 absorption line. Even so, 96% of the incident pump is absorbed in single passing the Cs cell because of the high on-line-center absorption and resulting high wing absorption. Here we model our pump laser as having a Gaussian spectral profile.

Fig. 4
Fig. 4

Shown as data points are our experimentally measured laser output powers versus incident pump powers for output coupler reflectivities of 0.3, 0.5, 0.7, and 0.9. The pump power on the horizontal axis is delivered into the Cs cell with an efficiency of 0.9. The solid lines are our corresponding energetics model predictions for laser output power.

Fig. 5
Fig. 5

Emission lifetime data corresponding to D2 excitation (at 848 nm). Both D2 emission (at 852 nm) and D1 emission (at 894 nm) are plotted as solid curves. Model predictions for these decays include the effect of the experimentally measured pump profile shown as dotted curves.

Fig. 6
Fig. 6

Schematic diagram showing pump powers and propagation directions at various points as the pump traverses the gain sample in a double-pass geometry.

Fig. 7
Fig. 7

Schematic diagram of the laser showing intracavity laser powers and propagation directions at various points within the laser resonator. The high reflector is denoted by HR and the output coupler by OC. The one-way cavity transmission excluding output coupling loss through the OC is denoted by T. It is assumed that all the passive losses in the cavity that contribute to T are located at the HR end of the cavity.

Fig. 8
Fig. 8

Optical–optical efficiency versus He pressure in the gain cell with the ethane pressure held fixed at 100 Torr. The pressure corresponds to the room-temperature fill value in the cell, which we assume is then sealed in the cell prior to bringing the cell to the laser operating temperature.

Fig. 9
Fig. 9

Optical–optical efficiency versus ethane pressure in the cell with the He pressure held fixed at 25 atm: The pressure corresponds to the room-temperature fill value in the cell, which we assume is then sealed in the cell prior to bringing the cell to the laser operating temperature.

Fig. 10
Fig. 10

Conceptual sketch of a power-scaled DPAL laser in which the diode pump radiation is delivered through a hollow lens duct to a slab configured gain volume, which is extracted by use of a zigzag geometry. Prismatic windows on the gain cell are used to enable a zigzag path without deviating the light path outside the gain cell. The cell is assumed to be statically filled with waste heat removed by conduction to the top and bottom surfaces.

Fig. 11
Fig. 11

Optical–optical efficiency versus cell temperature for the power-scaled baseline designs described in the text and in Table 4.

Fig. 12
Fig. 12

Laser output power versus diode pump input power for the power-scaled baseline designs described in the text and in Table 4.

Fig. 13
Fig. 13

Contours of constant optical–optical efficiency and contours of constant thermally induced focal length for both the Cs and the Rb systems discussed in the text as a function of pump linewidths between 0.5 and 5.0 nm and He pressures between 1 and 35 atm.

Tables (4)

Tables Icon

Table 1 Alkali D1 and D2 Transition Wavelengths

Tables Icon

Table 2 Atomic Cs Spectral Data (475 Torr of He in Cell)

Tables Icon

Table 3 Model Input and Output Parameters for Cs Laser Demonstrator

Tables Icon

Table 4 Comparison of Optimized Power-Scaled Cs and Rb Systems

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

γ 2P3/22P1/2=nethaneσ 2P3/22P1/2vr,
vr=3kBT1mHe+1methane1/2.
ΓD2-He=19.3 GHzamagatT294K.
ΔvFWHMradiative=12πτrad,
ΔvFWHMHe-broadened=ΓHenHe-amagat,
σHe-broadened=ΔvFWHMradiativeΔvFWHMHe-broadenedσradiative.
ni=1l gainsampledxni(x)fori=1,2,3,
dn1dt=-ΓP+ΓL+n2τD1+n3τD2,
dn2dt=-ΓL+γ 2P3/22P1/2 (n3-n2)-2 exp-ΔEkBT-1n2-n2τD1,
dn3dt=ΓP-γ 2P3/22P1/2 (n3-n2)-2 exp-ΔEkBT-1n2-n3τD2,
(n3-n2)-2 exp-ΔEkBT-1n20,
n3n2=2 exp-ΔEkBT.
ΓP=ηmodeηdelVL dλ1hc/λdPPdλ×1-exp-n1-12n3σD2(λ)l×1+RP exp-n1-12n3σD2(λ)l,
σD2(λ)=σD2He-broadened1+λ-λD2ΔλD2FWHM/22,
ΓL=1VLPLhvLRoc1-Roc{exp[(n2-n1)σD1He-broadenedl]-1}×{1+T2 exp[(n2-n1)σD1He-broadenedl]},
exp[2(n2-n1)σD1He-broadenedl]T2Roc=1,
ΓL=1VLPLhvLRoc1-Roc1T2Roc-11+T2Roc.
n0=n1+n2+n3,
n1=12(n0-n3)-12σD1He-broadenedl ln1T2Roc,
n2=12(n0-n3)+12σD1He-broadenedl ln1T2Roc.
ηmode=ωL2ωL2+ωP2,
Pfluorescence=VLn2τ1hcλD1+n3τ2hcλD2.
Pscattered=(1-T2)PL ROC1-ROC1T2ROC.
Pthermal=VLγ 2P3/22P1/2(n3-n2)-2 expΔEkBT-1n2ΔE.
PP-abs=VLΓP hcλD2,
PP-abs=PL+Pfluorescence+Pscattered+Pthermal,
20 GHzatm25atm=500GHz1nmatλ=800nm,
κHe=κHeSTPT273,
nrefindHe-1=(0.000036)nHe(T, P)nHeatSTP,
nrefindHe-1=(0.000036)(P/T)(P/T)|STP.
dnrefindHedT=-(0.000036)(P/T2)(P/T)|STP.
nD1-1=(qe2/me)8π2c2011λD22-1λD12(n1-n3),
dnD1dT=(qe2/me)8π2c2011λD22-1λD12d(n1-n3)dT.

Metrics