Abstract

The self-Q-switched laser performance of a diode-laser-pumped monolithic Cr4+, Nd3+:YAG planar–planar 5-mm-long resonator was studied experimentally and theoretically. The dynamic characteristics of the self-Q-switched Cr, Nd:YAG laser were studied by solution of coupled rate equations. The effects of the pump rate, the reflectivity of the output couplers, and the concentrations of saturable absorbers on the laser performance were investigated in detail. The numerical simulation of the Cr, Nd:YAG lasers was in good agreement with the experimental results. We could optimize the laser performance by varying the pump rate, the concentration of the Cr4+ ions in the saturable absorber, and the reflectivity of the output coupler. A typical self-Q-switched laser pulse output of 19 µJ, 3.5 ns wide (FWHM) at a repetition rate of 26 kHz, was obtained, yielding 5.4 kW of peak power.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
    [CrossRef]
  2. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
    [CrossRef]
  3. K. Spariosu, W. Chen, R. Stultz, and M. Birnbaum, “Dual Q-switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
    [CrossRef] [PubMed]
  4. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef] [PubMed]
  5. Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
    [CrossRef]
  6. B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).
  7. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
    [CrossRef]
  8. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
    [CrossRef]
  9. S. Zhou, K. K. Lee, and Y. C. Chen, “Monolithic self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 511–512 (1993).
    [CrossRef] [PubMed]
  10. Y. C. Chen, S. Li, K. K. Lee, and S. Zhou, “Self-stabilized single-longitudinal-mode operation in a self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 1418–1419 (1993).
    [CrossRef] [PubMed]
  11. S. Li, S. Zhou, P. Wang, and Y. C. Chen, “Self-Q-switched diode-end-pumped Cr, Nd:YAG laser with polarized output,” Opt. Lett. 18, 203–205 (1993).
    [CrossRef]
  12. G. Yao, S. Zhou, P. Wang, K. K. Lee, and Y. C. Chen, “Dynamics of transverse mode in self-Q-switched solid-state lasers,” Opt. Commun. 114, 101–105 (1995).
    [CrossRef]
  13. P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
    [CrossRef]
  14. J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
    [CrossRef]
  15. J. Dong, P. Deng, and M. Bass, “Cr, Nd:YAG self-Q-switched laser with high efficiency output,” Opt. Laser Technol. 34, 589–594 (2002).
    [CrossRef]
  16. R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching of Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24, 393–399 (2003).
  17. R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformation in Cr, Ca:YAG used as laser gain and passively Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24, 333–344 (2003).
  18. W. Kochner, Solid State Laser Engineering, 3rd ed. (Springer-Verlag, Berlin, 1992), Chap. 8.
  19. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [CrossRef]
  20. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
    [CrossRef]
  21. A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. (Amsterdam, Neth.) 3, 1–13 (1994).

2003

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching of Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24, 393–399 (2003).

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformation in Cr, Ca:YAG used as laser gain and passively Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24, 333–344 (2003).

2002

J. Dong, P. Deng, and M. Bass, “Cr, Nd:YAG self-Q-switched laser with high efficiency output,” Opt. Laser Technol. 34, 589–594 (2002).
[CrossRef]

2000

1999

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

1998

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

1997

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

1996

Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

1995

G. Yao, S. Zhou, P. Wang, K. K. Lee, and Y. C. Chen, “Dynamics of transverse mode in self-Q-switched solid-state lasers,” Opt. Commun. 114, 101–105 (1995).
[CrossRef]

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

1994

P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
[CrossRef]

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
[CrossRef] [PubMed]

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. (Amsterdam, Neth.) 3, 1–13 (1994).

1993

Bass, M.

J. Dong, P. Deng, and M. Bass, “Cr, Nd:YAG self-Q-switched laser with high efficiency output,” Opt. Laser Technol. 34, 589–594 (2002).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Ben-Amar, A.

Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Birnbaum, M.

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Burshtein, Z.

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching of Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24, 393–399 (2003).

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformation in Cr, Ca:YAG used as laser gain and passively Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24, 333–344 (2003).

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

Chen, W.

Chen, Y. C.

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

Deng, P.

J. Dong, P. Deng, and M. Bass, “Cr, Nd:YAG self-Q-switched laser with high efficiency output,” Opt. Laser Technol. 34, 589–594 (2002).
[CrossRef]

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[CrossRef]

Dill, C.

Dong, J.

J. Dong, P. Deng, and M. Bass, “Cr, Nd:YAG self-Q-switched laser with high efficiency output,” Opt. Laser Technol. 34, 589–594 (2002).
[CrossRef]

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett. 25, 1101–1103 (2000).
[CrossRef]

Feldman, R.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformation in Cr, Ca:YAG used as laser gain and passively Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24, 333–344 (2003).

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching of Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24, 393–399 (2003).

Kalisky, Y.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

Kokta, M. R.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Lee, K. K.

G. Yao, S. Zhou, P. Wang, K. K. Lee, and Y. C. Chen, “Dynamics of transverse mode in self-Q-switched solid-state lasers,” Opt. Commun. 114, 101–105 (1995).
[CrossRef]

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Y. C. Chen, S. Li, K. K. Lee, and S. Zhou, “Self-stabilized single-longitudinal-mode operation in a self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 1418–1419 (1993).
[CrossRef] [PubMed]

S. Zhou, K. K. Lee, and Y. C. Chen, “Monolithic self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 511–512 (1993).
[CrossRef] [PubMed]

Li, S.

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Lipavsky, B.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).

Liu, Y.

Lu, Y.

Okhrimchuk, A. G.

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. (Amsterdam, Neth.) 3, 1–13 (1994).

Rotman, S.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).

Shestakov, A. V.

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. (Amsterdam, Neth.) 3, 1–13 (1994).

Shimony, Y.

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching of Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24, 393–399 (2003).

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformation in Cr, Ca:YAG used as laser gain and passively Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24, 333–344 (2003).

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

Spariosu, K.

Strauss, M.

Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Stultz, R.

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Van Stryland, E.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Wang, P.

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

G. Yao, S. Zhou, P. Wang, K. K. Lee, and Y. C. Chen, “Dynamics of transverse mode in self-Q-switched solid-state lasers,” Opt. Commun. 114, 101–105 (1995).
[CrossRef]

S. Li, S. Zhou, P. Wang, and Y. C. Chen, “Self-Q-switched diode-end-pumped Cr, Nd:YAG laser with polarized output,” Opt. Lett. 18, 203–205 (1993).
[CrossRef]

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Xu, J.

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Yankov, P.

P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
[CrossRef]

Yao, G.

G. Yao, S. Zhou, P. Wang, K. K. Lee, and Y. C. Chen, “Dynamics of transverse mode in self-Q-switched solid-state lasers,” Opt. Commun. 114, 101–105 (1995).
[CrossRef]

Zayhowski, J. J.

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhang, Y.

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

Zhou, S.

IEEE J. Quantum Electron.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

Y. Shimony, Z. Burshtein, A. Ben-Amar, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using a Cr4+:YAG saturable absorber,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292–299 (1998).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33, 2286–2294 (1997).
[CrossRef]

J. Phys. D

P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D 27, 1118–1120 (1994).
[CrossRef]

Opt. Commun.

G. Yao, S. Zhou, P. Wang, K. K. Lee, and Y. C. Chen, “Dynamics of transverse mode in self-Q-switched solid-state lasers,” Opt. Commun. 114, 101–105 (1995).
[CrossRef]

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Opt. Laser Technol.

J. Dong, P. Deng, and M. Bass, “Cr, Nd:YAG self-Q-switched laser with high efficiency output,” Opt. Laser Technol. 34, 589–594 (2002).
[CrossRef]

Opt. Lett.

Opt. Mater. (Amsterdam, Neth.)

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. (Amsterdam, Neth.) 13, 117–127 (1999).

A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. (Amsterdam, Neth.) 3, 1–13 (1994).

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching of Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. (Amsterdam, Neth.) 24, 393–399 (2003).

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformation in Cr, Ca:YAG used as laser gain and passively Q-switching media,” Opt. Mater. (Amsterdam, Neth.) 24, 333–344 (2003).

Other

W. Kochner, Solid State Laser Engineering, 3rd ed. (Springer-Verlag, Berlin, 1992), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the self-Q-switching diode-laser-pumped Cr, Nd:YAG laser: AR, antireflective; HR, highly reflective.

Fig. 2
Fig. 2

Absorption spectrum of a Cr, Nd:YAG crystal at room temperature. (a) Absorption spectrum near 808 nm for Nd3+, which is suitable for commercially available diode laser pumping; (b) absorption spectrum of Cr4+ centered at 1064 nm.

Fig. 3
Fig. 3

Details of numerical calculations and experimental oscilloscope traces of the diode-laser-pumped Cr, Nd:YAG laser pulse train and a single pulse development in time. (a) Evolution of the photon density, gain inversion density, and loss on a time scale of the pulse repetition period. The measured oscilloscope pulse train is in arbitrary units for comparison with the numerical calculations. (b) Evolution of the photon density, gain inversion density and the loss on a time scale of the pulse width. In (a), the thin solid line is the experimental oscilloscope trace of the laser pulses; the thick lines are the numerical results. A pump rate of Wp=4×1022 s-1 cm-3 was used for both figures. The measured oscilloscope trace was normalized at peak power for comparison with the numerical calculation.

Fig. 4
Fig. 4

Diode-laser-pumped Cr, Nd:YAG self-Q-switched laser output characteristics (a) pulse energy, (b) pulse width, (c) repetition rate, (d) average output power, and (e) peak power as functions of pump rate for three Cr4+-ion concentrations of the saturable absorber.

Fig. 5
Fig. 5

Laser characteristics (a) pulse energy, (b) pulse width, (c) repetition rate, (d) average output power, and (e) peak power as functions of reflectivity of the output coupler for three concentrations of the Cr4+ saturable absorber. Pump rate, 6×1022 s-1 cm-3.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dϕdt=ϕtr2σNl-2σgNgl-2σeNel-ln1R-L,
dNdt=-γcσϕN-Nτ+Wp,
dNgdt=-σgcϕNg+Ns0-Ngτs,
Ng+Ne=Ns0.
Loss=2σgNgl+2σeNel+ln(1/R)+L2σl.
E=hνAltr ln1R0ϕ(t)dt,
P=hνAltr ln1Rϕmax,
τpE/P,

Metrics