Abstract

We present lifetime measurements of the 7S1/2 level and the 6p manifold of rubidium. We use a time-correlated single-photon counting technique on a sample of  85Rb atoms confined and cooled in a magneto-optic trap. The upper state of the 5P1/2 repumping transition serves as the resonant intermediate level for two-photon excitation of the 7s level. A probe laser provides the second step of the excitation, and we detect the decay of atomic fluorescence to the 5P3/2 level at 741 nm. The decay process feeds the 6p manifold that decays to the 5s ground state emitting UV photons. We measure lifetimes of 88.07±0.40 and 120.7±1.2 ns for the 7S1/2 level and 6p manifold, respectively; the hyperfine splitting of the 7S1/2 level is 282.6±1.6 MHz. The agreement with theoretical calculations confirms the understanding of the wave functions involved and provides confidence on the possibility of extracting weak interaction constants from a parity nonconservation measurement.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Johnson, M. S. Safronova, and U. I. Safronova, “Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction,” Phys. Rev. A 67, 062106 (2003).
    [CrossRef]
  2. J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
    [CrossRef]
  3. C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
    [CrossRef] [PubMed]
  4. C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
    [CrossRef]
  5. S. K. Lamoreaux and I. B. Khriplovich, CP Violation without Strangeness (Springer-Verlag, New York, 1997).
  6. L. A. Orozco, “Spectroscopy with trapped francium,” in Trapped Particles and Fundamental Physics, S. N. Atutov, R. Calabrese, and L. Moi, eds., Vol. 51 of NATO Science Series: II: Mathematics, Physics, and Chemistry (Kluwer Academic, Dordrecht, The Netherlands, 2002), pp. 125–159.
  7. S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “High efficiency magneto-optical trap for unstable isotopes,” Rev. Sci. Instrum. 74, 4342–4351 (2003).
    [CrossRef]
  8. S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetime measurement of the 9s level of atomic francium,” Opt. Lett. 28, 2055–2057 (2003).
    [CrossRef] [PubMed]
  9. S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetimes of the 9s and 8p levels of atomic francium,” Phys. Rev. A (to be published).
  10. R. D. Cowan, Theory of Atomic Structure and Spectra (University of California, Berkeley, Berkeley, Calif., 1981).
  11. W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
    [CrossRef]
  12. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
  13. L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
    [CrossRef] [PubMed]
  14. B. Hoeling, J. R. Yeh, T. Takekoshi, and R. J. Knize, “Measurement of the lifetime of the atomic cesium 52D5/2 state with diode-laser excitation,” Opt. Lett. 21, 74–76 (1996).
    [CrossRef] [PubMed]
  15. R. G. DeVoe and R. G. Brewer, “Precision measurements of the lifetime of a single trapped ion with a nonlinear electro-optic switch,” Opt. Lett. 19, 1891–1893 (1994).
    [CrossRef] [PubMed]
  16. J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
    [CrossRef]
  17. J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
    [CrossRef]
  18. M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
    [CrossRef]
  19. C. E. Theodosiou, “Lifetimes of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
    [CrossRef]
  20. J. Marek and P. Munster, “Radiative lifetimes of excited S states of rubidium up to quantum number n=12,” J. Phys. B 13, 1731–1741 (1980).
    [CrossRef]
  21. B. R. Bulos, R. Gupta, and W. Happer, “Lifetime measurements in excited S states of K, Rb, and Cs by the cascade Hanle effect,” J. Opt. Soc. Am. 66, 426–433 (1976).
    [CrossRef]
  22. A. Derevianko, “Correlated many-body treatment of the Breit interaction with application to cesium atomic properties and parity violation,” Phys. Rev. A 65, 012106 (2002).
    [CrossRef]
  23. H. Kopfermann, Nuclear Moments (Academic, New York, 1958).
  24. J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
    [CrossRef]
  25. R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, “Hyperfine-structure measurements of excited S states of the stable isotopes of potassium, rubidium, and cesium by cascade radio-frequency spectroscopy,” Phys. Rev. A 8, 2792–2810 (1973).
    [CrossRef]
  26. M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms,” Phys. Rev. A 60, 4476–4487 (1999).
    [CrossRef]
  27. O. P. Sushkov, “Breit-interaction correction to the hyperfine constant of an external s electron in a many-electron atom,” Phys. Rev. A 63, 042504 (2001).
    [CrossRef]

2004 (2)

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

2003 (3)

W. R. Johnson, M. S. Safronova, and U. I. Safronova, “Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction,” Phys. Rev. A 67, 062106 (2003).
[CrossRef]

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “High efficiency magneto-optical trap for unstable isotopes,” Rev. Sci. Instrum. 74, 4342–4351 (2003).
[CrossRef]

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetime measurement of the 9s level of atomic francium,” Opt. Lett. 28, 2055–2057 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Derevianko, “Correlated many-body treatment of the Breit interaction with application to cesium atomic properties and parity violation,” Phys. Rev. A 65, 012106 (2002).
[CrossRef]

2001 (1)

O. P. Sushkov, “Breit-interaction correction to the hyperfine constant of an external s electron in a many-electron atom,” Phys. Rev. A 63, 042504 (2001).
[CrossRef]

2000 (2)

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
[CrossRef]

1999 (2)

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[CrossRef]

M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms,” Phys. Rev. A 60, 4476–4487 (1999).
[CrossRef]

1998 (2)

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
[CrossRef]

J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
[CrossRef]

1997 (1)

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

1996 (1)

1994 (2)

R. G. DeVoe and R. G. Brewer, “Precision measurements of the lifetime of a single trapped ion with a nonlinear electro-optic switch,” Opt. Lett. 19, 1891–1893 (1994).
[CrossRef] [PubMed]

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

1984 (1)

C. E. Theodosiou, “Lifetimes of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
[CrossRef]

1980 (1)

J. Marek and P. Munster, “Radiative lifetimes of excited S states of rubidium up to quantum number n=12,” J. Phys. B 13, 1731–1741 (1980).
[CrossRef]

1976 (1)

1973 (1)

R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, “Hyperfine-structure measurements of excited S states of the stable isotopes of potassium, rubidium, and cesium by cascade radio-frequency spectroscopy,” Phys. Rev. A 8, 2792–2810 (1973).
[CrossRef]

Aubin, S.

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “High efficiency magneto-optical trap for unstable isotopes,” Rev. Sci. Instrum. 74, 4342–4351 (2003).
[CrossRef]

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetime measurement of the 9s level of atomic francium,” Opt. Lett. 28, 2055–2057 (2003).
[CrossRef] [PubMed]

Bennett, S. C.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[CrossRef]

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

Brewer, R. G.

Bulos, B. R.

Cho, D.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[CrossRef]

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

Clark, C. W.

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Derevianko, A.

A. Derevianko, “Correlated many-body treatment of the Breit interaction with application to cesium atomic properties and parity violation,” Phys. Rev. A 65, 012106 (2002).
[CrossRef]

M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms,” Phys. Rev. A 60, 4476–4487 (1999).
[CrossRef]

DeVoe, R. G.

Flambaum, V. V.

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

Fliller III, R. P.

J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
[CrossRef]

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

Ginges, J. S. M.

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

Gomez, E.

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “High efficiency magneto-optical trap for unstable isotopes,” Rev. Sci. Instrum. 74, 4342–4351 (2003).
[CrossRef]

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetime measurement of the 9s level of atomic francium,” Opt. Lett. 28, 2055–2057 (2003).
[CrossRef] [PubMed]

Grossman, J. M.

J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
[CrossRef]

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

Gupta, R.

B. R. Bulos, R. Gupta, and W. Happer, “Lifetime measurements in excited S states of K, Rb, and Cs by the cascade Hanle effect,” J. Opt. Soc. Am. 66, 426–433 (1976).
[CrossRef]

R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, “Hyperfine-structure measurements of excited S states of the stable isotopes of potassium, rubidium, and cesium by cascade radio-frequency spectroscopy,” Phys. Rev. A 8, 2792–2810 (1973).
[CrossRef]

Happer, W.

B. R. Bulos, R. Gupta, and W. Happer, “Lifetime measurements in excited S states of K, Rb, and Cs by the cascade Hanle effect,” J. Opt. Soc. Am. 66, 426–433 (1976).
[CrossRef]

R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, “Hyperfine-structure measurements of excited S states of the stable isotopes of potassium, rubidium, and cesium by cascade radio-frequency spectroscopy,” Phys. Rev. A 8, 2792–2810 (1973).
[CrossRef]

Hill III, W. T.

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

Hoeling, B.

Johnson, W. R.

W. R. Johnson, M. S. Safronova, and U. I. Safronova, “Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction,” Phys. Rev. A 67, 062106 (2003).
[CrossRef]

M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms,” Phys. Rev. A 60, 4476–4487 (1999).
[CrossRef]

Knize, R. J.

Lam, L. K.

R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, “Hyperfine-structure measurements of excited S states of the stable isotopes of potassium, rubidium, and cesium by cascade radio-frequency spectroscopy,” Phys. Rev. A 8, 2792–2810 (1973).
[CrossRef]

Leone, S. R.

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

Marek, J.

J. Marek and P. Munster, “Radiative lifetimes of excited S states of rubidium up to quantum number n=12,” J. Phys. B 13, 1731–1741 (1980).
[CrossRef]

Masterson, B. P.

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

Mehlstäubler,

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

Munster, P.

J. Marek and P. Munster, “Radiative lifetimes of excited S states of rubidium up to quantum number n=12,” J. Phys. B 13, 1731–1741 (1980).
[CrossRef]

Orozco, L. A.

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “High efficiency magneto-optical trap for unstable isotopes,” Rev. Sci. Instrum. 74, 4342–4351 (2003).
[CrossRef]

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetime measurement of the 9s level of atomic francium,” Opt. Lett. 28, 2055–2057 (2003).
[CrossRef] [PubMed]

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
[CrossRef]

J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
[CrossRef]

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
[CrossRef]

Pearson, M. R.

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
[CrossRef]

Price, S. D.

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

Roberts, J. L.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[CrossRef]

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

Safronova, M. S.

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

W. R. Johnson, M. S. Safronova, and U. I. Safronova, “Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction,” Phys. Rev. A 67, 062106 (2003).
[CrossRef]

M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms,” Phys. Rev. A 60, 4476–4487 (1999).
[CrossRef]

Safronova, U. I.

W. R. Johnson, M. S. Safronova, and U. I. Safronova, “Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction,” Phys. Rev. A 67, 062106 (2003).
[CrossRef]

Sibener, S. J.

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

Simsarian, J. E.

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
[CrossRef]

J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
[CrossRef]

Sprouse, G. D.

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “High efficiency magneto-optical trap for unstable isotopes,” Rev. Sci. Instrum. 74, 4342–4351 (2003).
[CrossRef]

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetime measurement of the 9s level of atomic francium,” Opt. Lett. 28, 2055–2057 (2003).
[CrossRef] [PubMed]

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
[CrossRef]

J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
[CrossRef]

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
[CrossRef]

Sushkov, O. P.

O. P. Sushkov, “Breit-interaction correction to the hyperfine constant of an external s electron in a many-electron atom,” Phys. Rev. A 63, 042504 (2001).
[CrossRef]

Svanberg, S.

R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, “Hyperfine-structure measurements of excited S states of the stable isotopes of potassium, rubidium, and cesium by cascade radio-frequency spectroscopy,” Phys. Rev. A 8, 2792–2810 (1973).
[CrossRef]

Takekoshi, T.

Tanner, C. E.

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

Theodosiou, C. E.

C. E. Theodosiou, “Lifetimes of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
[CrossRef]

Wieman, C. E.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[CrossRef]

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

Williams, C. J.

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Wood, C. S.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[CrossRef]

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

Yeh, J. R.

Young, L.

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

Zhao, W. Z.

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
[CrossRef]

J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
[CrossRef]

Can. J. Phys. (1)

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

J. Marek and P. Munster, “Radiative lifetimes of excited S states of rubidium up to quantum number n=12,” J. Phys. B 13, 1731–1741 (1980).
[CrossRef]

Opt. Lett. (3)

Phys. Rep. (1)

J. S. M. Ginges and V. V. Flambaum, “Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles,” Phys. Rep. 397, 63–154 (2004).
[CrossRef]

Phys. Rev. A (11)

W. R. Johnson, M. S. Safronova, and U. I. Safronova, “Combined effect of coherent Z exchange and the hyperfine interaction in the atomic parity-nonconserving interaction,” Phys. Rev. A 67, 062106 (2003).
[CrossRef]

J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao, “Lifetime measurements of the 7p levels of atomic francium,” Phys. Rev. A 57, 2448–2458 (1998).
[CrossRef]

J. M. Grossman, R. P. Fliller III, L. A. Orozco, M. R. Pearson, and G. D. Sprouse, “Lifetime measurements of the 7D levels of atomic francium,” Phys. Rev. A 62, 062502 (2000).
[CrossRef]

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

C. E. Theodosiou, “Lifetimes of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
[CrossRef]

L. Young, W. T. Hill III, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman, and S. R. Leone, “Precision lifetime measurements of Cs 6p2P1/2 and 6p2P3/2 levels by single-photon counting,” Phys. Rev. A 50, 2174–2181 (1994).
[CrossRef] [PubMed]

A. Derevianko, “Correlated many-body treatment of the Breit interaction with application to cesium atomic properties and parity violation,” Phys. Rev. A 65, 012106 (2002).
[CrossRef]

J. M. Grossman, R. P. Fliller III, Mehlstäubler, L. A. Orozco, M. R. Pearson, G. D. Sprouse, and W. Z. Zhao, “Energies and hyperfine splittings of the 7D levels of atomic francium,” Phys. Rev. A 62, 052507 (2000).
[CrossRef]

R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, “Hyperfine-structure measurements of excited S states of the stable isotopes of potassium, rubidium, and cesium by cascade radio-frequency spectroscopy,” Phys. Rev. A 8, 2792–2810 (1973).
[CrossRef]

M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms,” Phys. Rev. A 60, 4476–4487 (1999).
[CrossRef]

O. P. Sushkov, “Breit-interaction correction to the hyperfine constant of an external s electron in a many-electron atom,” Phys. Rev. A 63, 042504 (2001).
[CrossRef]

Rev. Sci. Instrum. (2)

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
[CrossRef]

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “High efficiency magneto-optical trap for unstable isotopes,” Rev. Sci. Instrum. 74, 4342–4351 (2003).
[CrossRef]

Science (1)

C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science 275, 1759–1763 (1997).
[CrossRef] [PubMed]

Other (6)

S. K. Lamoreaux and I. B. Khriplovich, CP Violation without Strangeness (Springer-Verlag, New York, 1997).

L. A. Orozco, “Spectroscopy with trapped francium,” in Trapped Particles and Fundamental Physics, S. N. Atutov, R. Calabrese, and L. Moi, eds., Vol. 51 of NATO Science Series: II: Mathematics, Physics, and Chemistry (Kluwer Academic, Dordrecht, The Netherlands, 2002), pp. 125–159.

S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse, “Lifetimes of the 9s and 8p levels of atomic francium,” Phys. Rev. A (to be published).

R. D. Cowan, Theory of Atomic Structure and Spectra (University of California, Berkeley, Berkeley, Calif., 1981).

D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

H. Kopfermann, Nuclear Moments (Academic, New York, 1958).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Energy levels of  85Rb for trapping and two-photon excitation to the 7s level (solid lines) fluorescence detection (dashed lines) and undetected fluorescence (dotted lines).

Fig. 2
Fig. 2

Schematic of the trap: AM EOM, amplitude modulation with an electro-optic modulator, AM AOM, amplitude modulation with an acousto-optic modulator.

Fig. 3
Fig. 3

Decay paths for the 7s and 6p levels of  85Rb.

Fig. 4
Fig. 4

Timing sequence for the excitation of atoms to the 7s level: high level is on, low level is off.

Fig. 5
Fig. 5

Block diagram for the electronics used for the detection of 7s or 6p photons.

Fig. 6
Fig. 6

Exponential decay of the 7s level. The upper plot contains the raw data that show the excitation turnon and turnoff as well as the exponential decay of the atoms (left scale). It also shows the background subtracted signal together with the exponential fit (right scale). The lower plot shows the normalized residuals (assuming statistical noise).

Fig. 7
Fig. 7

Lifetime obtained when the trap is displaced by the insertion of a piece of glass in the retroreflection mirrors of the MOT while the magnetic field environment remains unchanged: (a) no displacement and displacement using (b) mirror 1, (c) mirror 2, (d) mirror 3 and beams realigned, (e) no displacement and beams not realigned.

Fig. 8
Fig. 8

Experimental result of the 7s lifetime in Rb together with previous experimental results from (a) Marek and Munster20 and (b) Bulos et al.,21 and theoretical predictions from (c) Safronova et al.18 and (d) Theodosiou.19

Fig. 9
Fig. 9

Decay of the 6p manifold. The upper plot contains the raw data (left scale) and the data minus the background minus the exponential contribution from the 7s level (right scale). An exponential fit to this last curve is also shown. The lower plot contains the normalized residuals (assuming statistical noise).

Fig. 10
Fig. 10

Constraints on the lifetimes of the two 6p fine levels in Rb by use of the model described in the text and the experimental result. The solid curves define the limits of the 1σ and 2σ regions. The circles represent theoretical predictions from (a) Safronova et al.18 and (b) Theodosiou.19

Fig. 11
Fig. 11

Scan with wavemeter reading. The dots represent the number of photons per second and the solid curve is a fit with two Gaussian functions plus a background. The origin is arbitrarily defined to be 13732.467 cm-1 on the wavemeter.

Fig. 12
Fig. 12

Scan with the cavity reading. The horizontal axis is the relative (or percent) position of the probe laser transmission peak with respect to two fixed He–Ne transmission peaks in the cavity. The dots represent the number of photons per second and the solid curve is a fit with a Lorentzian function plus a background. The two peaks correspond to the two hyperfine levels and are separated by one free spectral range.

Fig. 13
Fig. 13

Solution of the steady-state optical Bloch equations and its comparison with the data. The intensities and detunings of the beams were adjusted to approximate the data and are consistent with the experimental values. We also add a background and an overall scale to the simulation. The probe intensity used is 27 mW/cm2, the repumper intensity is 37 mW/cm2, and the repumper detuning is 3 MHz.

Fig. 14
Fig. 14

Result for the hyperfine constant measurement and comparison with (a) previous experimental results25 and theoretical prediction26 (dotted line).

Tables (3)

Tables Icon

Table 1 Error Budget for 7s Level Lifetime Measurements

Tables Icon

Table 2 Error Budget for 6p Manifold Lifetime Measurements

Tables Icon

Table 3 Error Budget for 7s Level Hyperfine Splitting Measurements

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

1/τ=i1/τi.
1τi=43ω3c2α|J||r||J|22J+1,
Ni=Ni1-1nEj<iNj,
S7s=ca exp(-t/τ)+cb+cmt,
S6p=Ab+A7s exp(-t/τ7s)+A6p exp(-t/τ6p),
P(τ)=dτ12πσ7sexp-12τ-τ7sσ7s212πσ6p(τ)×exp-12τ-τ6p(τ)σ6p(τ)2.
σ6p=σ6p(τ7s)2+dτ6p(τ)dτσ7s21/2=0.35ns,
dNsdt=-Nsτs,
dNp1dt=Bp1Nsτs-Np1τp1,
dNp3dt=Bp3Nsτs-Np3τp3,
Np1=NsBp1τp1τs[1-exp(-t/τp1)],
Np3=NsBp3τp3τs[1-exp(-t/τp3)].
S6p˜=Ab˜+A˜bp1Np1τp1+bp3Np3τp3,
=Ab˜+A˜bp1Bp1τs-τp1+bp3Bp3τs-τp3exp(-t/τs)+bp1Bp11-exp(-T/τp1)τs-1τs-τp1×exp(-t/τp1)+bp3Bp31-exp(-T/τp3)τs-1τs-τp3×exp(-t/τp3),
bp1Bp11-exp(-T/τp1)τs-1τs-τp1exp(-t/τp1)
+bp3Bp31-exp(-T/τp3)τs-1τs-τp3×exp(-t/τp3)C exp(-t/τ6p).
S6p˜=Ab˜+C˜[exp(-t/τs)-1.29 exp(-t/τ6p)],
A=8π3μ0μB4πh2gμN|ψ(0)|2κ,
EHFh=AK2,

Metrics