Abstract

We present a spectroscopic study of transparent forsterite nanocrystalline glass–ceramic doped with chromium, a promising active medium for near-infrared fiber-optic applications. Absorption, emission, excited-state absorption spectra, and continuous function decay analysis of luminescence decay reveal the presence of Cr3+ and Cr4+ centers in both glass and crystal phases. The optical behavior of Cr3+ and Cr4+ centers is discussed and compared with that in bulk forsterite crystals.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  2. V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr[4+] the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
    [CrossRef]
  3. R. Moncorgé, H. Manaa, and G. Boulon, “Cr4+ and Mn5+ active centers for new solid state laser materials,” Opt. Mater. 4, 139–151 (1994).
    [CrossRef]
  4. S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
    [CrossRef]
  5. K. E. Downey, B. N. Samson, G. H. Beall, E. J. Mozdy, L. R. Pinckney, N. F. Borrelli, A. Mayolet, A. Kerdoncuff, and C. Pierron, “Cr 4+ : forsterite nanocrystalline glass–ceramic fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 211–212.
  6. R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Interscience, New York, 1965), Vol. 3, p. 93.
  7. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+ doped crystals,” Appl. Phys. B 61, 151–154 (1995).
    [CrossRef]
  8. T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
    [CrossRef]
  9. C. W. Struck and W. H. Fonger, “Unified model of the temperature quenching of narrow-line and broad-band emission,” J. Lumin. 10, 1–30 (1975).
    [CrossRef]
  10. M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. B 49, 12, 496–12, 506 (1994).
    [CrossRef]
  11. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989), p. 173.
  12. Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 6, 55–75 (1948).
    [CrossRef]
  13. D. I. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  14. M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
    [CrossRef]
  15. M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
    [CrossRef]
  16. V. Petričević, S. K. Gayen, and R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
    [CrossRef] [PubMed]
  17. L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys. 74, 5526–5538 (1981).
    [CrossRef]
  18. R. Reisfeld, “Glass lasers and solar applications,” in Spectroscopy of Solid State Laser-Type Materials, B. Di Bartolo, ed. (Plenum, New York, 1987), pp. 343–346.
  19. G. F. Imbusch, T. J. Glynn, and G. P. Morgan, “On the quantum efficiency of chromium-doped glasses,” J. Lumin. 45, 63–65 (1990).
    [CrossRef]
  20. M. Grinberg and K. Holliday, “Luminescence kinetics and emission lifetime distribution of Cr3+-doped aluminosilicate glass,” J. Lumin. 92, 277–286 (2001).
    [CrossRef]
  21. S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross section,” Phys. Rev. B 51, 17323–17331 (1995).
    [CrossRef]
  22. R. Englman, Non-Radiative Decay of Ions and Molecules in Solids (Elsevier/North-Holland, 1979), p. 336.
  23. W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351–360 (1972).
    [CrossRef]
  24. Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).
  25. J. C. W. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4, 648–663 (1971).
    [CrossRef]
  26. V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, “Inductive-resonant mechanism of nonradiative transitions in ions and molecules in condensed phase,” Phys. Usp. 39, 261–282 (1996).
    [CrossRef]
  27. E. B. Sveshnikova and I. B. Neporent, “Nonradiative deactivation of Cr3+ and Co3+ ions in frozen solutions,” Opt. Spectrosc. 35, 283–285 (1973).
  28. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu31 nanoparticles on the surrounding medium,” Phys. Rev. B 60, R14012–R14015 (1999).
    [CrossRef]
  29. D. R. Lide, ed., Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997–1998), Chap. 4.

2001

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
[CrossRef]

M. Grinberg and K. Holliday, “Luminescence kinetics and emission lifetime distribution of Cr3+-doped aluminosilicate glass,” J. Lumin. 92, 277–286 (2001).
[CrossRef]

1999

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu31 nanoparticles on the surrounding medium,” Phys. Rev. B 60, R14012–R14015 (1999).
[CrossRef]

1998

M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
[CrossRef]

M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
[CrossRef]

1997

T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
[CrossRef]

1996

V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, “Inductive-resonant mechanism of nonradiative transitions in ions and molecules in condensed phase,” Phys. Usp. 39, 261–282 (1996).
[CrossRef]

1995

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+ doped crystals,” Appl. Phys. B 61, 151–154 (1995).
[CrossRef]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross section,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

1994

R. Moncorgé, H. Manaa, and G. Boulon, “Cr4+ and Mn5+ active centers for new solid state laser materials,” Opt. Mater. 4, 139–151 (1994).
[CrossRef]

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. B 49, 12, 496–12, 506 (1994).
[CrossRef]

1990

G. F. Imbusch, T. J. Glynn, and G. P. Morgan, “On the quantum efficiency of chromium-doped glasses,” J. Lumin. 45, 63–65 (1990).
[CrossRef]

1989

1988

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr[4+] the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

1981

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys. 74, 5526–5538 (1981).
[CrossRef]

1976

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

1975

C. W. Struck and W. H. Fonger, “Unified model of the temperature quenching of narrow-line and broad-band emission,” J. Lumin. 10, 1–30 (1975).
[CrossRef]

1973

E. B. Sveshnikova and I. B. Neporent, “Nonradiative deactivation of Cr3+ and Co3+ ions in frozen solutions,” Opt. Spectrosc. 35, 283–285 (1973).

1972

W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351–360 (1972).
[CrossRef]

1971

J. C. W. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4, 648–663 (1971).
[CrossRef]

1953

D. I. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

1948

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 6, 55–75 (1948).
[CrossRef]

Alfano, R. R.

V. Petričević, S. K. Gayen, and R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
[CrossRef] [PubMed]

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr[4+] the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

Andrews, L. J.

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys. 74, 5526–5538 (1981).
[CrossRef]

Anzai, H.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Bodunov, E. N.

V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, “Inductive-resonant mechanism of nonradiative transitions in ions and molecules in condensed phase,” Phys. Usp. 39, 261–282 (1996).
[CrossRef]

Boulon, G.

R. Moncorgé, H. Manaa, and G. Boulon, “Cr4+ and Mn5+ active centers for new solid state laser materials,” Opt. Mater. 4, 139–151 (1994).
[CrossRef]

Brunold, T. C.

T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
[CrossRef]

Dexter, D. I.

D. I. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Ermolaev, V. L.

V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, “Inductive-resonant mechanism of nonradiative transitions in ions and molecules in condensed phase,” Phys. Usp. 39, 261–282 (1996).
[CrossRef]

Feofilov, S. P.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu31 nanoparticles on the surrounding medium,” Phys. Rev. B 60, R14012–R14015 (1999).
[CrossRef]

Fonger, W. H.

C. W. Struck and W. H. Fonger, “Unified model of the temperature quenching of narrow-line and broad-band emission,” J. Lumin. 10, 1–30 (1975).
[CrossRef]

Förster, Th.

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 6, 55–75 (1948).
[CrossRef]

Gayen, S. K.

V. Petričević, S. K. Gayen, and R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
[CrossRef] [PubMed]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr[4+] the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Glynn, T. J.

G. F. Imbusch, T. J. Glynn, and G. P. Morgan, “On the quantum efficiency of chromium-doped glasses,” J. Lumin. 45, 63–65 (1990).
[CrossRef]

Grant, J. C. W.

J. C. W. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4, 648–663 (1971).
[CrossRef]

Grinberg, M.

M. Grinberg and K. Holliday, “Luminescence kinetics and emission lifetime distribution of Cr3+-doped aluminosilicate glass,” J. Lumin. 92, 277–286 (2001).
[CrossRef]

M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
[CrossRef]

M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
[CrossRef]

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. B 49, 12, 496–12, 506 (1994).
[CrossRef]

Güdel, H. U.

T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
[CrossRef]

Hazenkamp, M. F.

T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
[CrossRef]

Holliday, K.

M. Grinberg and K. Holliday, “Luminescence kinetics and emission lifetime distribution of Cr3+-doped aluminosilicate glass,” J. Lumin. 92, 277–286 (2001).
[CrossRef]

M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
[CrossRef]

M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
[CrossRef]

Huber, G.

T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
[CrossRef]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+ doped crystals,” Appl. Phys. B 61, 151–154 (1995).
[CrossRef]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross section,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Imbusch, G. F.

G. F. Imbusch, T. J. Glynn, and G. P. Morgan, “On the quantum efficiency of chromium-doped glasses,” J. Lumin. 45, 63–65 (1990).
[CrossRef]

Koepke, Cz.

M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
[CrossRef]

M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
[CrossRef]

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+ doped crystals,” Appl. Phys. B 61, 151–154 (1995).
[CrossRef]

Kück, S.

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
[CrossRef]

T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
[CrossRef]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross section,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Lempicki, A.

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys. 74, 5526–5538 (1981).
[CrossRef]

Mamedov, T. G.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Manaa, H.

R. Moncorgé, H. Manaa, and G. Boulon, “Cr4+ and Mn5+ active centers for new solid state laser materials,” Opt. Mater. 4, 139–151 (1994).
[CrossRef]

Mandelis, A.

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. B 49, 12, 496–12, 506 (1994).
[CrossRef]

McCollum, B. C.

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys. 74, 5526–5538 (1981).
[CrossRef]

Meltzer, R. S.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu31 nanoparticles on the surrounding medium,” Phys. Rev. B 60, R14012–R14015 (1999).
[CrossRef]

Moncorgé, R.

R. Moncorgé, H. Manaa, and G. Boulon, “Cr4+ and Mn5+ active centers for new solid state laser materials,” Opt. Mater. 4, 139–151 (1994).
[CrossRef]

Morgan, G. P.

G. F. Imbusch, T. J. Glynn, and G. P. Morgan, “On the quantum efficiency of chromium-doped glasses,” J. Lumin. 45, 63–65 (1990).
[CrossRef]

Neporent, I. B.

E. B. Sveshnikova and I. B. Neporent, “Nonradiative deactivation of Cr3+ and Co3+ ions in frozen solutions,” Opt. Spectrosc. 35, 283–285 (1973).

Osiko, V. V.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Petermann, K.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross section,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Petricevic, V.

V. Petričević, S. K. Gayen, and R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
[CrossRef] [PubMed]

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr[4+] the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

Phillips, W. A.

W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351–360 (1972).
[CrossRef]

Pohlmann, U.

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross section,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Prokhorov, A. M.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Russell, D. L.

M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
[CrossRef]

M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
[CrossRef]

Sakun, V. P.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Shcherbakov, I. A.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Struck, C. W.

C. W. Struck and W. H. Fonger, “Unified model of the temperature quenching of narrow-line and broad-band emission,” J. Lumin. 10, 1–30 (1975).
[CrossRef]

Sveshnikova, E. B.

V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, “Inductive-resonant mechanism of nonradiative transitions in ions and molecules in condensed phase,” Phys. Usp. 39, 261–282 (1996).
[CrossRef]

E. B. Sveshnikova and I. B. Neporent, “Nonradiative deactivation of Cr3+ and Co3+ ions in frozen solutions,” Opt. Spectrosc. 35, 283–285 (1973).

Tissue, B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu31 nanoparticles on the surrounding medium,” Phys. Rev. B 60, R14012–R14015 (1999).
[CrossRef]

Voron’ko, Yu. K.

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Wisnewski, K.

M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
[CrossRef]

Wisniewski, K.

M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
[CrossRef]

Yamagishi, K.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yamaguchi, Y.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yuan, H. B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu31 nanoparticles on the surrounding medium,” Phys. Rev. B 60, R14012–R14015 (1999).
[CrossRef]

Ann. Phys. (Leipzig)

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 6, 55–75 (1948).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Kück, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
[CrossRef]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+ doped crystals,” Appl. Phys. B 61, 151–154 (1995).
[CrossRef]

T. C. Brunold, H. U. Güdel, M. F. Hazenkamp, G. Huber, and S. Kück, “Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4,” Appl. Phys. B 64, 647–650 (1997).
[CrossRef]

Appl. Phys. Lett.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr[4+] the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

J. Chem. Phys.

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys. 74, 5526–5538 (1981).
[CrossRef]

D. I. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

J. Low Temp. Phys.

W. A. Phillips, “Tunneling states in amorphous solids,” J. Low Temp. Phys. 7, 351–360 (1972).
[CrossRef]

J. Lumin.

G. F. Imbusch, T. J. Glynn, and G. P. Morgan, “On the quantum efficiency of chromium-doped glasses,” J. Lumin. 45, 63–65 (1990).
[CrossRef]

M. Grinberg and K. Holliday, “Luminescence kinetics and emission lifetime distribution of Cr3+-doped aluminosilicate glass,” J. Lumin. 92, 277–286 (2001).
[CrossRef]

C. W. Struck and W. H. Fonger, “Unified model of the temperature quenching of narrow-line and broad-band emission,” J. Lumin. 10, 1–30 (1975).
[CrossRef]

Opt. Commun.

M. Grinberg, D. L. Russell, K. Holliday, K. Wisnewski, and Cz. Koepke, “Continuous function decay analysis of a multisite impurity activated solid,” Opt. Commun. 156, 409–418 (1998).
[CrossRef]

Opt. Mater.

R. Moncorgé, H. Manaa, and G. Boulon, “Cr4+ and Mn5+ active centers for new solid state laser materials,” Opt. Mater. 4, 139–151 (1994).
[CrossRef]

Opt. Spectrosc.

E. B. Sveshnikova and I. B. Neporent, “Nonradiative deactivation of Cr3+ and Co3+ ions in frozen solutions,” Opt. Spectrosc. 35, 283–285 (1973).

Phys. Rev. B

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu31 nanoparticles on the surrounding medium,” Phys. Rev. B 60, R14012–R14015 (1999).
[CrossRef]

J. C. W. Grant, “Role of rate equations in the theory of luminescent energy transfer,” Phys. Rev. B 4, 648–663 (1971).
[CrossRef]

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. B 49, 12, 496–12, 506 (1994).
[CrossRef]

S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross section,” Phys. Rev. B 51, 17323–17331 (1995).
[CrossRef]

Phys. Usp.

V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, “Inductive-resonant mechanism of nonradiative transitions in ions and molecules in condensed phase,” Phys. Usp. 39, 261–282 (1996).
[CrossRef]

Sov. Phys. JETP

Yu. K. Voron’ko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, and I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Spectrochim. Acta A

M. Grinberg, K. Wisniewski, Cz. Koepke, D. L. Russell, and K. Holliday, “Luminescence and luminescence kinetics of chromium doped gahnite glass ceramics,” Spectrochim. Acta A 54, 1735–1739 (1998).
[CrossRef]

Other

R. Reisfeld, “Glass lasers and solar applications,” in Spectroscopy of Solid State Laser-Type Materials, B. Di Bartolo, ed. (Plenum, New York, 1987), pp. 343–346.

R. Englman, Non-Radiative Decay of Ions and Molecules in Solids (Elsevier/North-Holland, 1979), p. 336.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989), p. 173.

K. E. Downey, B. N. Samson, G. H. Beall, E. J. Mozdy, L. R. Pinckney, N. F. Borrelli, A. Mayolet, A. Kerdoncuff, and C. Pierron, “Cr 4+ : forsterite nanocrystalline glass–ceramic fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 211–212.

R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Interscience, New York, 1965), Vol. 3, p. 93.

D. R. Lide, ed., Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997–1998), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Microstructure of forsterite glass–ceramic, revealing nanocrystals nucleated in the dispersed amorphous phase.

Fig. 2
Fig. 2

Absorption spectra of glass–ceramic (solid curve), unpolarized Cr3+-doped bulk forsterite (dashed curve), and unpolarized Cr4+-doped bulk forsterite (dotted curve). The unpolarized spectra of bulk forsterite were calculated by use of measured polarized absorption spectra of Cr3+- and Cr4+-doped forsterite crystals. Inset, energy-level diagrams of Cr3+ and Cr4+ ions.

Fig. 3
Fig. 3

(a) Polarized ESA spectra of bulk forsterite and (b) ESA spectrum of glass–ceramic. Iu and Ip, intensity of light passed through optically unpumped and pumped samples, respectively. Vertical axes, realtive difference of the probe beam intensity passed through pumped and unpumped samples (bleaching). Both (a) and (b) spectra were taken when Cr4+ ions were pumped in the  3T2 absorption band with a cw Nd:YAG laser.

Fig. 4
Fig. 4

Luminescence spectra of glass–ceramic (dotted curve) and bulk forsterite crystals (solid curve) at 300 and 77 K.

Fig. 5
Fig. 5

(a) Decay of Cr3+ luminescence in glass–ceramic at various temperatures. Solid curves, fits obtained from recovered decay time distributions. The Y axis indicates the relative intensity of emission. (b) Recovered decay time distributions for decay indicated in (a). Y axis, distribution of lifetimes.

Fig. 6
Fig. 6

Decay of Cr4+ luminescence in glass–ceramic (solid curves) and in bulk forsterite crystal (dotted curves) at various temperatures.

Fig. 7
Fig. 7

Decay of Cr4+ luminescence at 80 K in glass–ceramic (solid curve) and in bulk forsterite (dotted curve). (b) Distribution of recovered decay times for the decay in glass–ceramic shown in (a) by the solid curve.

Fig. 8
Fig. 8

(a) Temperature dependence of long-lifetime decay of Cr4+ luminescence in glass–ceramic (dotted curve) and bulk forsterite (solid curve) crystals. (b) Temperature dependence of short-lifetime decay of Cr4+ luminescence in glass–ceramic.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(t)= A(τ)τexp(-t/τ)dτ.
A(τ)exp(-t/τ)d(ln τ)iAi exp(-t/τi).
χ2=k[Iex(tk)-I(tk)]2σk2,
WnradW0 exp(-Δ/kT),
I(t)exp[-t/τ+γ(s)t3/s],
τrad1f(ED)λ2[1/3(n2+2)]2n,

Metrics