Abstract

Lithium thioindate (LiInS2) is a new nonlinear chalcogenide biaxial material transparent from 0.4 to 12 µm that has been successfully grown in large sizes and with good optical quality. We report on new physical properties that are relevant for laser and nonlinear optics applications. With respect to AgGaS(e)2 ternary chalcopyrite materials, LiInS2 displays a nearly isotropic thermal expansion behavior, a 5-times-larger thermal conductivity associated with high optical damage thresholds, and an extremely low-intensity-dependent absorption, allowing direct high-power downconversion from the near-IR to the deep mid-IR. Continuous-wave difference-frequency generation (5–11 µm) of Ti:sapphire laser sources is reported for the first time to our knowledge.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bhar and R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
    [CrossRef]
  2. J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
    [CrossRef]
  3. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd revised ed. (Springer, Berlin, 1999).
  4. K. Stoll, J.-J. Zondy, and O. Acef, “Fourth-harmonic generation of a continuous-wave CO2 laser by use of an AgGaSe2/ZnGeP2 doubly resonant device,” Opt. Lett. 22, 1302–1304 (1997).
    [CrossRef]
  5. D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
    [CrossRef]
  6. A. Douillet and J.-J. Zondy, “Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator,” Opt. Lett. 23, 1259–1261 (1998).
    [CrossRef]
  7. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
    [CrossRef]
  8. R. Hoppe, “Ternäre Oxide der Alkalimetalle,” Bull. Soc. Chim. Fr. 1965, 1115–1121 (1965).
  9. G. D. Boyd, H. M. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of LiInS2,” J. Appl. Phys. 44, 2809–2812 (1973).
    [CrossRef]
  10. T. Kamijoh and K. Kuriyama, “Single crystal growth of LiInS2,” J. Cryst. Growth 46, 801–803 (1979).
    [CrossRef]
  11. T. Kamijoh and K. Kuriyama, “Blue-band emission in LiInS2 crystals,” J. Appl. Phys. 51, 1827–1828 (1981).
    [CrossRef]
  12. T. Kamijoh, T. Nozaki, and K. Kuriyama, “A photoluminescence study of lithium ternary compounds,” Nuovo Cimento 2D, Ser. 1, 2029–2033 (1983).
  13. K. Kuriyama, T. Kato, and A. Takahashi, “Optical band gap and blue-band emission of a LiInS2 single crystal,” Phys. Rev. B 46, 15518–15519 (1992).
    [CrossRef]
  14. K. Kuriyama, T. Kato, and A. Takahashi, “Blue-band emission of LiInS2 single crystals grown by the indium solution method,” Jpn. J. Appl. Phys. 32, Suppl. 322–23, 615–617 (1993).
    [CrossRef]
  15. K. Kuriyama and T. Kato, “Optical band gap and photoluminescence studies in blue-band region of Zn-doped LiInS2 single crystals,” Solid State Commun. 89, 959–962 (1994).
    [CrossRef]
  16. M. I. Golovei, E. Yu. Peresh, and E. E. Semrad, “Production and characteristics of semiconductor materials of complex composition, promising for quantum electronics and optoelectronics,” Kvantovaya Elektronika, Kiev 20, 93–103 (1981).
  17. K. Kuriyama and J. Saitoh, “Preparation and optical properties of LiInS2 thin films,” Thin Solid Films 111, 331–337 (1984).
    [CrossRef]
  18. L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
    [CrossRef]
  19. A. Yelisseyev, L. Isaenko, S. Lobanov, J.-J. Zondy, A. Douillet, I. Thénot, Ph. Kupecek, G. Mennerat, J. Mangin, S. Fossier, and S. Salaün, “New ternary sulfide for double applications in laser schemes,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 2000), pp. 561–568.
  20. G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001).
    [CrossRef]
  21. F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
    [CrossRef]
  22. J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).
  23. A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
    [CrossRef]
  24. S. Pearl, S. Fastig, Y. Ehrlich, and R. Lavi, “Limited efficiency of a silver selenogallate optical parametric oscillator caused by two-photon absorption,” Appl. Opt. 40, 2490–2492 (2001).
    [CrossRef]
  25. L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
    [CrossRef]
  26. S. K. Kovach, E. E. Semrad, Yu. V. Voroshilov, V. S. Gerasimenko, V. Yu. Slivka, and N. P. Stasyuk, “Preparation and principal physicochemical properties of alkali metal indates and thioindates,” Inorg. Mater. 14, 1693–1697 (1978); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 14, 2172–2176 (1978)].
  27. Z. Z. Kish, V. B. Lazarev, E. E. Semrad, H. Yu. Peresh, and I. V. Galagovets, “Some properties of single crystals of LiInS2 and NaInS2,” Inorg. Mater. 20, 647–649 (1984); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 750–752 (1984)].
  28. J. Brückner, “I-III-VI Verbindungshalbleiter mit Lithium als Gruppe I-Element: Kristallzüchtung und Charakterisierung,” Ph.D dissertation thesis (Albert-Ludwigs University, Freiburg, Germany, 1997).
  29. L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).
  30. L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
    [CrossRef]
  31. Z. Z. Kish, E. Yu. Peresh, V. B. Lazarev, and E. E. Semrad, “Systematics and the rules of variations in the properties of AIBIIIC2VI-type compounds,” Inorg. Mater. 23, 697–703 (1987); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 23, 777–784 (1987)].
  32. R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. (Bellingham) 26, 113–119 (1987).
    [CrossRef]
  33. A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999).
    [CrossRef]
  34. Z. Z. Kish, A. S. Kanishcheva, Yu. N. Mikhailov, V. B. Lazarev, E. E. Sempad, and E. Yu. Peresh, “Synthesis and crystal structure of lithium thioindate LiInS2,” Soviet Physics/Doklady (Physical Chemistry) 30, 36–38 (1985); [transl. from Dokl. Akad. Nauk SSSR 280, 398–401 (1985)].
  35. D. A. Roberts, “Simplified chracterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  36. American National Standard, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987, IEEE, New York, 1988.
  37. G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987).
    [CrossRef]
  38. H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986).
    [CrossRef]
  39. H. Neumann, G. Kühn, and W. Möller, “High-temperature specific heat of AgInS2 and AgGaSe2,” Cryst. Res. Technol. 20, 1225–1229 (1985).
    [CrossRef]
  40. J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
    [CrossRef]
  41. P. Korczak and C. B. Staff, “Liquid encapsulated Czochralski growth of silver thiogallate,” J. Cryst. Growth 24/25, 386–389 (1974).
    [CrossRef]
  42. G. W. Iseler, “Thermal expansion and seed Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
    [CrossRef]
  43. J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω−ω→2ω infrared parametric amplification,” J. Opt. Soc. Am. B 14, 1331–1338 (1997).
    [CrossRef]
  44. J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
    [CrossRef]
  45. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142, 570–574 (1966).
    [CrossRef]
  46. S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000).
    [CrossRef]
  47. V. S. D’Ordyai, V. A. Stefanovich, E. I. Pan’ko, V. B. Lazarev, E. Yu. Peresh, and Z. Z. Kish, “Raman scattering in LiInS2,” Inorg. Mater. 24, 461–464 (1988); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 555–559 (1988)].
  48. H. Neumann, “Vibrational properties of LiGaO2. II: Theoretical model considerations,” Cryst. Res. Technol. 21, 1361–1366 (1986).
    [CrossRef]
  49. H. Neumann, “Lattice vibrations in AIBIIIC2VI chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).
  50. C. Ebbers, Lawrence Livermore National Laboratory, Livermore, Calif. 94550, personal communication, 2000).
  51. S. Fossier, “Métrologie des propriétés optiques de cristaux massifs; Etude de LiInS 2, matriau optiquement non linaire pour l’infrarouge moyen,” Thèse de Doctorat (Universit de Bourgogne, France, 2002).
  52. T. J. Negran, H. M. Kasper, and A. M. Glass, “Pyroelectric and electrooptic effects in LiInS2 and LiInSe2,” Mater. Res. Bull. 8, 743–748 (1973).
    [CrossRef]
  53. C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
    [CrossRef]
  54. R. A. Soref, “Interrelation of pyroelectric and nonlinear optical coefficients in ferroelectric crystals,” IEEE J. Quantum Electron. QE-5, 126–129 (1969).
    [CrossRef]
  55. O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
    [CrossRef]
  56. Ch. Ebbers, “Summary of known nonlinear properties of LiInS 2,” preprint UCRL-ID-116744 (Lawrence Livermore National Laboratories, Livermore, Calif., 1994).
  57. Yu. M. Andreev, L. G. Geiko, P. P. Geiko, and S. G. Grechin, “Optical properties of a nonlinear LiInS2 crystal,” Quantum Electron. 31, 647–648 (2001); [transl. from Kvantovaya Elektron. (Moscow) 31, 647–648 (2001)].
    [CrossRef]
  58. Yu. M. Andreev, V. V. Badikov, P. P. Geiko, and S. G. Grechin, “Fulfillments of phase-matching conditions and optical characteristics of lithium thioindate nonlinear crystals,” Atmos. Oceanic Opt. 14, 1001–1004 (2001); [transl. from Optika Atmosphery i Okeana 14, 1087–1090 (2001)].
  59. V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
    [CrossRef]
  60. V. G. Dmitriev and D. N. Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry,” Opt. Commun. 95, 173–182 (1993).
    [CrossRef]
  61. K. V. Diesperov and V. G. Dmitriev, “Effective nonlinear coefficient for sum-frequency generation with collinear phase matching calculated taking account of the birefringence in biaxial crystals,” Quantum Electron. 27, 433–436 (1997); [transl. from Kvantovaya Elektronika (Moscow) 24, 445–448 (1997)].
    [CrossRef]
  62. M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
    [CrossRef]
  63. J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
    [CrossRef]
  64. F. Brehat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. B: At. Mol. Opt. Phys. 22, 1891–1898 (1989).
    [CrossRef]
  65. J. Yao, W. Sheng, and W. Shi, “Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,” J. Opt. Soc. Am. B 9, 891–902 (1992).
    [CrossRef]
  66. W. Q. Zhang, “Optical parametric generation for biaxial crystals,” Opt. Commun. 105, 226–232 (1994).
    [CrossRef]
  67. V. I. Zadorozhnii, “Improved analytical method for calculating the parameters of phase-matched nonlinear-optical interactions in biaxial crystals,” Opt. Commun. 176, 489–501 (2000).
    [CrossRef]
  68. W. Q. Zhang, “Group-velocity matching in the mixing of three noncollinear phase-matched waves for biaxial crystal,” Opt. Commun. 221, 191–197 (2003).
    [CrossRef]
  69. M. H. van der Mooren, Th. Rasing, and H. J. A. Bluyssen, “Determination of the type I phase matching angles and conversion efficiency in KTP,” Appl. Opt. 34, 934–937 (1995).
    [CrossRef] [PubMed]
  70. F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
    [CrossRef]
  71. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  72. F. Rotermund and V. Petrov, “Femtosecond noncollinear optical parametric amplification in the mid-infrared range with 1.25 μm pumping,” Jpn. J. Appl. Phys., Suppl. 40, 3195–3200 (2001).
    [CrossRef]
  73. H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
    [CrossRef]
  74. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994).
    [CrossRef]
  75. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  76. J.-J. Zondy, “Comparative theory of walkoff-limited type II versus type I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
    [CrossRef]
  77. B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, P. Villeval, and J. J. Zondy, “Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere,” J. Opt. Soc. Am. B 14, 1380–1386 (1997).
    [CrossRef]
  78. J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14, 2481–2497 (1997).
    [CrossRef]
  79. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
    [CrossRef]
  80. P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
    [CrossRef]
  81. W. Chen, J. Burie, and D. Boucher, “Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm,” Rev. Sci. Instrum. 67, 3411–3415 (1996).
    [CrossRef]
  82. D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
    [CrossRef]
  83. W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
    [CrossRef]
  84. J.-J. Zondy, “The effects of focusing in type I and type II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
    [CrossRef]
  85. A. D. Ludlow, H. M. Nelson, and S. D. Bergeson, “Two-photon absorption in potassium niobate,” J. Opt. Soc. Am. B 18, 1813–1820 (2001).
    [CrossRef]
  86. L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
    [CrossRef]
  87. H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
    [CrossRef]
  88. L. Shiv, J. L. Sorensen, and E. S. Polzik, “Inhibited light-induced absorption in KNbO3,” Opt. Lett. 20, 2270–2272 (1995).
    [CrossRef]
  89. L. Isaenko, A. Yelisseyev, L. Lobanov, I. Vasilyeva, V. Petrov, V. Nadolinny, J. Smirnova, and J.-J. Zondy, “Effect of deviation from stoichiometry on photoinduced absorption in LiInS 2 nonlinear crystals,” presented at the 8th European Conf. on Solid State Chemistry (ECSSC-8), July 4–7, 2001, Oslo, Norway.
  90. G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS 2 and AgGaSe 2,” MRS Bulletin, July 1998, pp. 28–36.
  91. U. Simon, S. Waltman, I. Loa, F. K. Tittel, and L. Hollberg, “External-cavity difference-frequency source near 3.2 μm based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323–327 (1995).
    [CrossRef]
  92. M. A. Acharekar, J. L. Montgomery, and R. J. Rapp, “Laser damage threshold measurements of AgGaSe2 crystal at 9 μm,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 46–54 (1992).
    [CrossRef]
  93. A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
    [CrossRef]
  94. B. C. Ziegler and K. L. Schepler, “Transmission and damage-threshold measurements in AgGaSe2 at 2.1 μm,” Appl. Opt. 30, 5077–5080 (1991).
    [CrossRef] [PubMed]
  95. Yu. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, and I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001); [transl. from Kvantovaya Elektron. (Moscow) 31, 1075–1078 (2001)].
    [CrossRef]
  96. J. Mangin, G. Jeandel, and G. Marnier, “Temperature dependence of polarization in KTiOPO4 single crystals,” Phys. Status Solidi A 117, 319–323 (1990).
    [CrossRef]
  97. L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
    [CrossRef]
  98. S. Zelt, Fabereicht Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany (private communication, 2003).

2003 (3)

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

W. Q. Zhang, “Group-velocity matching in the mixing of three noncollinear phase-matched waves for biaxial crystal,” Opt. Commun. 221, 191–197 (2003).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

2002 (3)

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

2001 (9)

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

F. Rotermund and V. Petrov, “Femtosecond noncollinear optical parametric amplification in the mid-infrared range with 1.25 μm pumping,” Jpn. J. Appl. Phys., Suppl. 40, 3195–3200 (2001).
[CrossRef]

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001).
[CrossRef]

S. Pearl, S. Fastig, Y. Ehrlich, and R. Lavi, “Limited efficiency of a silver selenogallate optical parametric oscillator caused by two-photon absorption,” Appl. Opt. 40, 2490–2492 (2001).
[CrossRef]

A. D. Ludlow, H. M. Nelson, and S. D. Bergeson, “Two-photon absorption in potassium niobate,” J. Opt. Soc. Am. B 18, 1813–1820 (2001).
[CrossRef]

2000 (6)

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

V. I. Zadorozhnii, “Improved analytical method for calculating the parameters of phase-matched nonlinear-optical interactions in biaxial crystals,” Opt. Commun. 176, 489–501 (2000).
[CrossRef]

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000).
[CrossRef]

1999 (3)

A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
[CrossRef]

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

1998 (5)

A. Douillet and J.-J. Zondy, “Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator,” Opt. Lett. 23, 1259–1261 (1998).
[CrossRef]

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

J.-J. Zondy, “The effects of focusing in type I and type II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
[CrossRef]

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

1997 (5)

1996 (2)

W. Chen, J. Burie, and D. Boucher, “Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm,” Rev. Sci. Instrum. 67, 3411–3415 (1996).
[CrossRef]

J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).

1995 (3)

1994 (4)

J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994).
[CrossRef]

H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
[CrossRef]

W. Q. Zhang, “Optical parametric generation for biaxial crystals,” Opt. Commun. 105, 226–232 (1994).
[CrossRef]

K. Kuriyama and T. Kato, “Optical band gap and photoluminescence studies in blue-band region of Zn-doped LiInS2 single crystals,” Solid State Commun. 89, 959–962 (1994).
[CrossRef]

1993 (3)

K. Kuriyama, T. Kato, and A. Takahashi, “Blue-band emission of LiInS2 single crystals grown by the indium solution method,” Jpn. J. Appl. Phys. 32, Suppl. 322–23, 615–617 (1993).
[CrossRef]

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

V. G. Dmitriev and D. N. Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry,” Opt. Commun. 95, 173–182 (1993).
[CrossRef]

1992 (5)

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
[CrossRef]

J. Yao, W. Sheng, and W. Shi, “Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,” J. Opt. Soc. Am. B 9, 891–902 (1992).
[CrossRef]

M. A. Acharekar, J. L. Montgomery, and R. J. Rapp, “Laser damage threshold measurements of AgGaSe2 crystal at 9 μm,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 46–54 (1992).
[CrossRef]

D. A. Roberts, “Simplified chracterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

K. Kuriyama, T. Kato, and A. Takahashi, “Optical band gap and blue-band emission of a LiInS2 single crystal,” Phys. Rev. B 46, 15518–15519 (1992).
[CrossRef]

1991 (2)

J.-J. Zondy, “Comparative theory of walkoff-limited type II versus type I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
[CrossRef]

B. C. Ziegler and K. L. Schepler, “Transmission and damage-threshold measurements in AgGaSe2 at 2.1 μm,” Appl. Opt. 30, 5077–5080 (1991).
[CrossRef] [PubMed]

1990 (2)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

J. Mangin, G. Jeandel, and G. Marnier, “Temperature dependence of polarization in KTiOPO4 single crystals,” Phys. Status Solidi A 117, 319–323 (1990).
[CrossRef]

1989 (1)

F. Brehat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. B: At. Mol. Opt. Phys. 22, 1891–1898 (1989).
[CrossRef]

1987 (2)

G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987).
[CrossRef]

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. (Bellingham) 26, 113–119 (1987).
[CrossRef]

1986 (2)

H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986).
[CrossRef]

H. Neumann, “Vibrational properties of LiGaO2. II: Theoretical model considerations,” Cryst. Res. Technol. 21, 1361–1366 (1986).
[CrossRef]

1985 (2)

H. Neumann, “Lattice vibrations in AIBIIIC2VI chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).

H. Neumann, G. Kühn, and W. Möller, “High-temperature specific heat of AgInS2 and AgGaSe2,” Cryst. Res. Technol. 20, 1225–1229 (1985).
[CrossRef]

1984 (2)

K. Kuriyama and J. Saitoh, “Preparation and optical properties of LiInS2 thin films,” Thin Solid Films 111, 331–337 (1984).
[CrossRef]

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

1983 (1)

T. Kamijoh, T. Nozaki, and K. Kuriyama, “A photoluminescence study of lithium ternary compounds,” Nuovo Cimento 2D, Ser. 1, 2029–2033 (1983).

1981 (2)

M. I. Golovei, E. Yu. Peresh, and E. E. Semrad, “Production and characteristics of semiconductor materials of complex composition, promising for quantum electronics and optoelectronics,” Kvantovaya Elektronika, Kiev 20, 93–103 (1981).

T. Kamijoh and K. Kuriyama, “Blue-band emission in LiInS2 crystals,” J. Appl. Phys. 51, 1827–1828 (1981).
[CrossRef]

1979 (1)

T. Kamijoh and K. Kuriyama, “Single crystal growth of LiInS2,” J. Cryst. Growth 46, 801–803 (1979).
[CrossRef]

1977 (1)

G. W. Iseler, “Thermal expansion and seed Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
[CrossRef]

1974 (2)

P. Korczak and C. B. Staff, “Liquid encapsulated Czochralski growth of silver thiogallate,” J. Cryst. Growth 24/25, 386–389 (1974).
[CrossRef]

J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
[CrossRef]

1973 (2)

G. D. Boyd, H. M. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of LiInS2,” J. Appl. Phys. 44, 2809–2812 (1973).
[CrossRef]

T. J. Negran, H. M. Kasper, and A. M. Glass, “Pyroelectric and electrooptic effects in LiInS2 and LiInSe2,” Mater. Res. Bull. 8, 743–748 (1973).
[CrossRef]

1972 (1)

G. C. Bhar and R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

1969 (1)

R. A. Soref, “Interrelation of pyroelectric and nonlinear optical coefficients in ferroelectric crystals,” IEEE J. Quantum Electron. QE-5, 126–129 (1969).
[CrossRef]

1968 (1)

C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
[CrossRef]

1967 (1)

M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

1966 (1)

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142, 570–574 (1966).
[CrossRef]

1965 (1)

R. Hoppe, “Ternäre Oxide der Alkalimetalle,” Bull. Soc. Chim. Fr. 1965, 1115–1121 (1965).

Abed, M.

Acef, O.

Acharekar, M. A.

M. A. Acharekar, J. L. Montgomery, and R. J. Rapp, “Laser damage threshold measurements of AgGaSe2 crystal at 9 μm,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 46–54 (1992).
[CrossRef]

Adel, P.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

Badikov, V. V.

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Benko, Z.

Bente, K.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

Bergeson, S. D.

Bhar, G. C.

G. C. Bhar and R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

Bidault, O.

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

Bluyssen, H. J. A.

Bonnin, C.

Boucher, D.

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

W. Chen, J. Burie, and D. Boucher, “Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm,” Rev. Sci. Instrum. 67, 3411–3415 (1996).
[CrossRef]

Boulanger, B.

Boyd, G. D.

G. D. Boyd, H. M. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of LiInS2,” J. Appl. Phys. 44, 2809–2812 (1973).
[CrossRef]

Brehat, F.

F. Brehat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. B: At. Mol. Opt. Phys. 22, 1891–1898 (1989).
[CrossRef]

Brückner, J.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).

Bulou, A.

S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000).
[CrossRef]

Burie, J.

W. Chen, J. Burie, and D. Boucher, “Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm,” Rev. Sci. Instrum. 67, 3411–3415 (1996).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Canarelli, P.

Chen, G. F.

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

Chen, W.

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

W. Chen, J. Burie, and D. Boucher, “Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm,” Rev. Sci. Instrum. 67, 3411–3415 (1996).
[CrossRef]

Chizhikov, V. I.

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Clairon, A.

Curl, R.

Damen, T. C.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142, 570–574 (1966).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev and D. N. Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry,” Opt. Commun. 95, 173–182 (1993).
[CrossRef]

Douillet, A.

Dovlitova, L.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Efimenko, T. D.

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Efimenko, V. V.

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Ehrlich, Y.

Eickemeyer, F.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

Eifler, A.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

Elsaesser, T.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

Fahlen, T. S.

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

Fallnich, C.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Fastig, S.

Feigelson, R. S.

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. (Bellingham) 26, 113–119 (1987).
[CrossRef]

Feve, J. P.

Fossier, S.

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
[CrossRef]

Gesland, J. Y.

S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000).
[CrossRef]

Glass, A. M.

T. J. Negran, H. M. Kasper, and A. M. Glass, “Pyroelectric and electrooptic effects in LiInS2 and LiInSe2,” Mater. Res. Bull. 8, 743–748 (1973).
[CrossRef]

Golovei, M. I.

M. I. Golovei, E. Yu. Peresh, and E. E. Semrad, “Production and characteristics of semiconductor materials of complex composition, promising for quantum electronics and optoelectronics,” Kvantovaya Elektronika, Kiev 20, 93–103 (1981).

Grill, W.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

Hänsch, T. W.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Harasaki, A.

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Hellstrom, J.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

Hobden, M. V.

M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

Hollberg, L.

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Hoppe, R.

R. Hoppe, “Ternäre Oxide der Alkalimetalle,” Bull. Soc. Chim. Fr. 1965, 1115–1121 (1965).

Hundertmark, H.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

Isaenko, L.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
[CrossRef]

Iseler, G. W.

G. W. Iseler, “Thermal expansion and seed Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
[CrossRef]

Jeandel, G.

J. Mangin, G. Jeandel, and G. Marnier, “Temperature dependence of polarization in KTiOPO4 single crystals,” Phys. Status Solidi A 117, 319–323 (1990).
[CrossRef]

Kaindl, R. A.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

Kaing, T.

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

Kamijoh, T.

T. Kamijoh, T. Nozaki, and K. Kuriyama, “A photoluminescence study of lithium ternary compounds,” Nuovo Cimento 2D, Ser. 1, 2029–2033 (1983).

T. Kamijoh and K. Kuriyama, “Blue-band emission in LiInS2 crystals,” J. Appl. Phys. 51, 1827–1828 (1981).
[CrossRef]

T. Kamijoh and K. Kuriyama, “Single crystal growth of LiInS2,” J. Cryst. Growth 46, 801–803 (1979).
[CrossRef]

Kasper, H. M.

J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
[CrossRef]

G. D. Boyd, H. M. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of LiInS2,” J. Appl. Phys. 44, 2809–2812 (1973).
[CrossRef]

T. J. Negran, H. M. Kasper, and A. M. Glass, “Pyroelectric and electrooptic effects in LiInS2 and LiInSe2,” Mater. Res. Bull. 8, 743–748 (1973).
[CrossRef]

Kato, K.

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Kato, T.

K. Kuriyama and T. Kato, “Optical band gap and photoluminescence studies in blue-band region of Zn-doped LiInS2 single crystals,” Solid State Commun. 89, 959–962 (1994).
[CrossRef]

K. Kuriyama, T. Kato, and A. Takahashi, “Blue-band emission of LiInS2 single crystals grown by the indium solution method,” Jpn. J. Appl. Phys. 32, Suppl. 322–23, 615–617 (1993).
[CrossRef]

K. Kuriyama, T. Kato, and A. Takahashi, “Optical band gap and blue-band emission of a LiInS2 single crystal,” Phys. Rev. B 46, 15518–15519 (1992).
[CrossRef]

Kavun, I.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Kimble, H. J.

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Knippels, G.

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

Knippels, G. H. M.

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

Knippels, G. M.

Korczak, P.

P. Korczak and C. B. Staff, “Liquid encapsulated Czochralski growth of silver thiogallate,” J. Cryst. Growth 24/25, 386–389 (1974).
[CrossRef]

Krämer, V.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).

Krinitsin, P.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Kühn, G.

G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987).
[CrossRef]

H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986).
[CrossRef]

H. Neumann, G. Kühn, and W. Möller, “High-temperature specific heat of AgInS2 and AgGaSe2,” Cryst. Res. Technol. 20, 1225–1229 (1985).
[CrossRef]

Kuriyama, K.

K. Kuriyama and T. Kato, “Optical band gap and photoluminescence studies in blue-band region of Zn-doped LiInS2 single crystals,” Solid State Commun. 89, 959–962 (1994).
[CrossRef]

K. Kuriyama, T. Kato, and A. Takahashi, “Blue-band emission of LiInS2 single crystals grown by the indium solution method,” Jpn. J. Appl. Phys. 32, Suppl. 322–23, 615–617 (1993).
[CrossRef]

K. Kuriyama, T. Kato, and A. Takahashi, “Optical band gap and blue-band emission of a LiInS2 single crystal,” Phys. Rev. B 46, 15518–15519 (1992).
[CrossRef]

K. Kuriyama and J. Saitoh, “Preparation and optical properties of LiInS2 thin films,” Thin Solid Films 111, 331–337 (1984).
[CrossRef]

T. Kamijoh, T. Nozaki, and K. Kuriyama, “A photoluminescence study of lithium ternary compounds,” Nuovo Cimento 2D, Ser. 1, 2029–2033 (1983).

T. Kamijoh and K. Kuriyama, “Blue-band emission in LiInS2 crystals,” J. Appl. Phys. 51, 1827–1828 (1981).
[CrossRef]

T. Kamijoh and K. Kuriyama, “Single crystal growth of LiInS2,” J. Cryst. Growth 46, 801–803 (1979).
[CrossRef]

Lahlou-Kassi, L.

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

Laurell, F.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

Lavi, R.

Lee, D.

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

Lippold, G.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

Liu, H. J.

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

Loa, I.

Lobanov, S.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
[CrossRef]

Ludlow, A. D.

Mabuchi, H.

MacLeod, A. M.

Malakhov, Y.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Mangin, J.

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

J. Mangin, G. Jeandel, and G. Marnier, “Temperature dependence of polarization in KTiOPO4 single crystals,” Phys. Status Solidi A 117, 319–323 (1990).
[CrossRef]

Marnier, G.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

McFee, J. H.

G. D. Boyd, H. M. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of LiInS2,” J. Appl. Phys. 44, 2809–2812 (1973).
[CrossRef]

Merkulov, A.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Möller, W.

H. Neumann, G. Kühn, and W. Möller, “High-temperature specific heat of AgInS2 and AgGaSe2,” Cryst. Res. Technol. 20, 1225–1229 (1985).
[CrossRef]

Montgomery, J. L.

M. A. Acharekar, J. L. Montgomery, and R. J. Rapp, “Laser damage threshold measurements of AgGaSe2 crystal at 9 μm,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 46–54 (1992).
[CrossRef]

Mouret, G.

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

Negran, T. J.

T. J. Negran, H. M. Kasper, and A. M. Glass, “Pyroelectric and electrooptic effects in LiInS2 and LiInSe2,” Mater. Res. Bull. 8, 743–748 (1973).
[CrossRef]

Nelson, H. M.

Neumann, H.

G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987).
[CrossRef]

H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986).
[CrossRef]

H. Neumann, “Vibrational properties of LiGaO2. II: Theoretical model considerations,” Cryst. Res. Technol. 21, 1361–1366 (1986).
[CrossRef]

H. Neumann, “Lattice vibrations in AIBIIIC2VI chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).

H. Neumann, G. Kühn, and W. Möller, “High-temperature specific heat of AgInS2 and AgGaSe2,” Cryst. Res. Technol. 20, 1225–1229 (1985).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev and D. N. Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry,” Opt. Commun. 95, 173–182 (1993).
[CrossRef]

Noack, F.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

Nowak, E.

J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).

G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987).
[CrossRef]

Nozaki, T.

T. Kamijoh, T. Nozaki, and K. Kuriyama, “A photoluminescence study of lithium ternary compounds,” Nuovo Cimento 2D, Ser. 1, 2029–2033 (1983).

Panyutin, V. L.

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Pasiskevicius, V.

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

Pearl, S.

Peresh, E. Yu.

M. I. Golovei, E. Yu. Peresh, and E. E. Semrad, “Production and characteristics of semiconductor materials of complex composition, promising for quantum electronics and optoelectronics,” Kvantovaya Elektronika, Kiev 20, 93–103 (1981).

Petrov, V.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

F. Rotermund and V. Petrov, “Femtosecond noncollinear optical parametric amplification in the mid-infrared range with 1.25 μm pumping,” Jpn. J. Appl. Phys., Suppl. 40, 3195–3200 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

Piel, E.

G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987).
[CrossRef]

Polzik, E. S.

Porto, S. P. S.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142, 570–574 (1966).
[CrossRef]

Rapp, R. J.

M. A. Acharekar, J. L. Montgomery, and R. J. Rapp, “Laser damage threshold measurements of AgGaSe2 crystal at 9 μm,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 46–54 (1992).
[CrossRef]

Rasing, Th.

Riede, V.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).

H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified chracterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Rotermund, F.

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

F. Rotermund and V. Petrov, “Femtosecond noncollinear optical parametric amplification in the mid-infrared range with 1.25 μm pumping,” Jpn. J. Appl. Phys., Suppl. 40, 3195–3200 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

Route, R. K.

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. (Bellingham) 26, 113–119 (1987).
[CrossRef]

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Saitoh, J.

K. Kuriyama and J. Saitoh, “Preparation and optical properties of LiInS2 thin films,” Thin Solid Films 111, 331–337 (1984).
[CrossRef]

Salaün, S.

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000).
[CrossRef]

Schepler, K. L.

Scherbakov, S. I.

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Schiavone, L. M.

J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
[CrossRef]

Schmitz, W.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

Schumann, B.

J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).

Semrad, E. E.

M. I. Golovei, E. Yu. Peresh, and E. E. Semrad, “Production and characteristics of semiconductor materials of complex composition, promising for quantum electronics and optoelectronics,” Kvantovaya Elektronika, Kiev 20, 93–103 (1981).

Shay, J. L.

J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
[CrossRef]

Sheng, W.

Shevyrdyaeva, G. S.

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Shi, W.

Shiv, L.

Simon, P.

S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000).
[CrossRef]

Simon, U.

Slekys, G.

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

Smirnova, J.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Smith, R. C.

G. C. Bhar and R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

Sobotta, H.

H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986).
[CrossRef]

Soref, R. A.

R. A. Soref, “Interrelation of pyroelectric and nonlinear optical coefficients in ferroelectric crystals,” IEEE J. Quantum Electron. QE-5, 126–129 (1969).
[CrossRef]

Sorensen, J. L.

Staff, C. B.

P. Korczak and C. B. Staff, “Liquid encapsulated Czochralski growth of silver thiogallate,” J. Cryst. Growth 24/25, 386–389 (1974).
[CrossRef]

Stoll, K.

Strimer, P.

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

Takahashi, A.

K. Kuriyama, T. Kato, and A. Takahashi, “Blue-band emission of LiInS2 single crystals grown by the indium solution method,” Jpn. J. Appl. Phys. 32, Suppl. 322–23, 615–617 (1993).
[CrossRef]

K. Kuriyama, T. Kato, and A. Takahashi, “Optical band gap and blue-band emission of a LiInS2 single crystal,” Phys. Rev. B 46, 15518–15519 (1992).
[CrossRef]

Tell, B.

J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
[CrossRef]

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142, 570–574 (1966).
[CrossRef]

Thénot, I.

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

Thiel, F.

J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
[CrossRef]

Titov, A.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Tittel, F. K.

Touahri, D.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

van der Meer, A. P. G.

van der Mooren, M. H.

Vasilyeva, I.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Vedenyapin, V.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Villeval, P.

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Waltman, S.

Wang, T.

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

Wang, Y. S.

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

Weise, S.

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

Woerner, M.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

Wyncke, B.

F. Brehat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. B: At. Mol. Opt. Phys. 22, 1891–1898 (1989).
[CrossRef]

Yao, J.

Yao, J. Q.

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

Yelisseyev, A.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
[CrossRef]

Zadorozhnii, V. I.

V. I. Zadorozhnii, “Improved analytical method for calculating the parameters of phase-matched nonlinear-optical interactions in biaxial crystals,” Opt. Commun. 176, 489–501 (2000).
[CrossRef]

Zhang, W. Q.

W. Q. Zhang, “Group-velocity matching in the mixing of three noncollinear phase-matched waves for biaxial crystal,” Opt. Commun. 221, 191–197 (2003).
[CrossRef]

W. Q. Zhang, “Optical parametric generation for biaxial crystals,” Opt. Commun. 105, 226–232 (1994).
[CrossRef]

Zhao, S. H.

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

Zhao, W.

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

Ziegler, B. C.

Zondy, J. J.

Zondy, J.-J.

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

G. M. Knippels, A. P. G. van der Meer, A. M. MacLeod, A. Yelisseyev, L. Isaenko, S. Lobanov, I. Thénot, and J.-J. Zondy, “Mid-infrared (2.75–6.0 μm) second-harmonic generation in LiInS2,” Opt. Lett. 26, 617–619 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
[CrossRef]

A. Douillet and J.-J. Zondy, “Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator,” Opt. Lett. 23, 1259–1261 (1998).
[CrossRef]

J.-J. Zondy, “The effects of focusing in type I and type II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
[CrossRef]

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

K. Stoll, J.-J. Zondy, and O. Acef, “Fourth-harmonic generation of a continuous-wave CO2 laser by use of an AgGaSe2/ZnGeP2 doubly resonant device,” Opt. Lett. 22, 1302–1304 (1997).
[CrossRef]

J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14, 2481–2497 (1997).
[CrossRef]

J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω−ω→2ω infrared parametric amplification,” J. Opt. Soc. Am. B 14, 1331–1338 (1997).
[CrossRef]

J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994).
[CrossRef]

J.-J. Zondy, “Comparative theory of walkoff-limited type II versus type I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

D. Lee, T. Kaing, and J.-J. Zondy, “An all-diode-laser-based, dual-cavity AgGaS2 cw difference-frequency source for the 9–11 μm range,” Appl. Phys. B 67, 363–367 (1998).
[CrossRef]

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

F. Rotermund, V. Petrov, F. Noack, L. Isaenko, A. Yelisseyev, and S. Lobanov, “Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm,” Appl. Phys. Lett. 78, 2623–2625 (2001).
[CrossRef]

Bull. Soc. Chim. Fr. (1)

R. Hoppe, “Ternäre Oxide der Alkalimetalle,” Bull. Soc. Chim. Fr. 1965, 1115–1121 (1965).

Cryst. Res. Technol. (6)

J. Brückner, V. Krämer, E. Nowak, V. Riede, and B. Schumann, “Crystal growth and characterization of LiInS2,” Cryst. Res. Technol. 31, Suppl., 15–18 (1996).

G. Kühn, E. Piel, H. Neumann, and E. Nowak, “Heat capacity of LiInS2, LiInSe2, and LiInTe2 between 300 and 550 K,” Cryst. Res. Technol. 22, 265–269 (1987).
[CrossRef]

H. Sobotta, H. Neumann, V. Riede, and G. Kühn, “Lattice vibrations and interatomic forces in LiInS2,” Cryst. Res. Technol. 21, 1367–1371 (1986).
[CrossRef]

H. Neumann, G. Kühn, and W. Möller, “High-temperature specific heat of AgInS2 and AgGaSe2,” Cryst. Res. Technol. 20, 1225–1229 (1985).
[CrossRef]

H. Neumann, “Vibrational properties of LiGaO2. II: Theoretical model considerations,” Cryst. Res. Technol. 21, 1361–1366 (1986).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Electron. Lett. (1)

F. Rotermund, V. Petrov, F. Noack, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, “Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,” Electron. Lett. 38, 561–563 (2002).
[CrossRef]

Helv. Phys. Acta (1)

H. Neumann, “Lattice vibrations in AIBIIIC2VI chalcopyrite compounds,” Helv. Phys. Acta 58, 337–346 (1985).

IEEE J. Quantum Electron. (4)

C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
[CrossRef]

R. A. Soref, “Interrelation of pyroelectric and nonlinear optical coefficients in ferroelectric crystals,” IEEE J. Quantum Electron. QE-5, 126–129 (1969).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

D. A. Roberts, “Simplified chracterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

J. Appl. Phys. (5)

G. D. Boyd, H. M. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of LiInS2,” J. Appl. Phys. 44, 2809–2812 (1973).
[CrossRef]

T. Kamijoh and K. Kuriyama, “Blue-band emission in LiInS2 crystals,” J. Appl. Phys. 51, 1827–1828 (1981).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, G. Slekys, and J.-J. Zondy, “LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-infrared,” J. Appl. Phys. 91, 9475–9480 (2002).
[CrossRef]

M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

J. Cryst. Growth (4)

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, Y. Malakhov, L. Dovlitova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

T. Kamijoh and K. Kuriyama, “Single crystal growth of LiInS2,” J. Cryst. Growth 46, 801–803 (1979).
[CrossRef]

P. Korczak and C. B. Staff, “Liquid encapsulated Czochralski growth of silver thiogallate,” J. Cryst. Growth 24/25, 386–389 (1974).
[CrossRef]

G. W. Iseler, “Thermal expansion and seed Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
[CrossRef]

J. Opt. Soc. Am. B (10)

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
[CrossRef]

J. Yao, W. Sheng, and W. Shi, “Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,” J. Opt. Soc. Am. B 9, 891–902 (1992).
[CrossRef]

J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994).
[CrossRef]

H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
[CrossRef]

U. Simon, S. Waltman, I. Loa, F. K. Tittel, and L. Hollberg, “External-cavity difference-frequency source near 3.2 μm based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323–327 (1995).
[CrossRef]

A. D. Ludlow, H. M. Nelson, and S. D. Bergeson, “Two-photon absorption in potassium niobate,” J. Opt. Soc. Am. B 18, 1813–1820 (2001).
[CrossRef]

J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω−ω→2ω infrared parametric amplification,” J. Opt. Soc. Am. B 14, 1331–1338 (1997).
[CrossRef]

B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, P. Villeval, and J. J. Zondy, “Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere,” J. Opt. Soc. Am. B 14, 1380–1386 (1997).
[CrossRef]

J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14, 2481–2497 (1997).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1498 (1999).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

F. Brehat and B. Wyncke, “Calculation of double-refraction walk-off angle along the phase-matching directions in non-linear biaxial crystals,” J. Phys. B: At. Mol. Opt. Phys. 22, 1891–1898 (1989).
[CrossRef]

J. Phys. Condens. Matter (1)

S. Salaün, A. Bulou, J. Y. Gesland, and P. Simon, “Lattice dynamics of the fluoride scheelite CaZnF4,” J. Phys. Condens. Matter 12, 7395–7408 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (3)

A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, and W. Grill, “Band gap energies and lattice vibrations of the lithium ternary compounds LiInSe2, LiInS2, LiGaSe2 and LiGaS2,” Jpn. J. Appl. Phys., 39, Suppl. 39–1, 279–281 (2000).
[CrossRef]

K. Kuriyama, T. Kato, and A. Takahashi, “Blue-band emission of LiInS2 single crystals grown by the indium solution method,” Jpn. J. Appl. Phys. 32, Suppl. 322–23, 615–617 (1993).
[CrossRef]

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Jpn. J. Appl. Phys., Suppl. (1)

F. Rotermund and V. Petrov, “Femtosecond noncollinear optical parametric amplification in the mid-infrared range with 1.25 μm pumping,” Jpn. J. Appl. Phys., Suppl. 40, 3195–3200 (2001).
[CrossRef]

Kvantovaya Elektronika, Kiev (1)

M. I. Golovei, E. Yu. Peresh, and E. E. Semrad, “Production and characteristics of semiconductor materials of complex composition, promising for quantum electronics and optoelectronics,” Kvantovaya Elektronika, Kiev 20, 93–103 (1981).

Mater. Res. Bull. (1)

T. J. Negran, H. M. Kasper, and A. M. Glass, “Pyroelectric and electrooptic effects in LiInS2 and LiInSe2,” Mater. Res. Bull. 8, 743–748 (1973).
[CrossRef]

Mater. Sci. Semicond. Proc. (1)

L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J.-J. Zondy, and G. H. M. Knippels, “LiInS2: a new nonlinear crystal for the mid-IR,” Mater. Sci. Semicond. Proc. 4, 665–668 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

Nuovo Cimento (1)

T. Kamijoh, T. Nozaki, and K. Kuriyama, “A photoluminescence study of lithium ternary compounds,” Nuovo Cimento 2D, Ser. 1, 2029–2033 (1983).

Opt. Commun. (7)

J.-J. Zondy, “The effects of focusing in type I and type II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
[CrossRef]

H. J. Liu, G. F. Chen, W. Zhao, Y. S. Wang, T. Wang, and S. H. Zhao, “Phase-matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals,” Opt. Commun. 197, 507–514 (2001).
[CrossRef]

J.-J. Zondy, “Comparative theory of walkoff-limited type II versus type I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
[CrossRef]

V. G. Dmitriev and D. N. Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystals of mm2 point group symmetry,” Opt. Commun. 95, 173–182 (1993).
[CrossRef]

W. Q. Zhang, “Optical parametric generation for biaxial crystals,” Opt. Commun. 105, 226–232 (1994).
[CrossRef]

V. I. Zadorozhnii, “Improved analytical method for calculating the parameters of phase-matched nonlinear-optical interactions in biaxial crystals,” Opt. Commun. 176, 489–501 (2000).
[CrossRef]

W. Q. Zhang, “Group-velocity matching in the mixing of three noncollinear phase-matched waves for biaxial crystal,” Opt. Commun. 221, 191–197 (2003).
[CrossRef]

Opt. Eng. (Bellingham) (1)

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. (Bellingham) 26, 113–119 (1987).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. (Amsterdam) (1)

V. V. Badikov, V. I. Chizhikov, V. V. Efimenko, T. D. Efimenko, V. L. Panyutin, G. S. Shevyrdyaeva, and S. I. Scherbakov, “Optical properties of lithium indium selenide,” Opt. Mater. (Amsterdam) 23, 575–581 (2003).
[CrossRef]

Opto-Electron. Rev. (1)

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Opto-Electron. Rev. 9, 135–141 (2000).

Phys. Rev. (1)

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142, 570–574 (1966).
[CrossRef]

Phys. Rev. B (2)

K. Kuriyama, T. Kato, and A. Takahashi, “Optical band gap and blue-band emission of a LiInS2 single crystal,” Phys. Rev. B 46, 15518–15519 (1992).
[CrossRef]

J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, “Energy bands of AgInS2 in the chalcopyrite and orthorhombic structures,” Phys. Rev. B 9, 1719–1723 (1974).
[CrossRef]

Phys. Rev. Lett. (1)

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi A (2)

G. C. Bhar and R. C. Smith, “Optical properties of II-IV-V2 and I-III-VI2 crystals with particular reference to transmission limits,” Phys. Status Solidi A 13, 157–168 (1972).
[CrossRef]

J. Mangin, G. Jeandel, and G. Marnier, “Temperature dependence of polarization in KTiOPO4 single crystals,” Phys. Status Solidi A 117, 319–323 (1990).
[CrossRef]

Proc. SPIE (4)

M. A. Acharekar, J. L. Montgomery, and R. J. Rapp, “Laser damage threshold measurements of AgGaSe2 crystal at 9 μm,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 46–54 (1992).
[CrossRef]

J. Mangin, S. Salaün, S. Fossier, P. Strimer, J.-J. Zondy, L. Isaenko, and A. Yelisseyev, “Optical properties of lithium thioindate,” in Growth, Fabrication, Devices, and Applications of Laser and Nonlinear Materials, J. W. Pierce and K. I. Schaffers, eds., Proc. SPIE 4268, 49–57 (2001).
[CrossRef]

L. Isaenko, A. Yelisseyev, J.-J. Zondy, G. Knippels, I. Thénot, and S. Lobanov, “Growth and characterization of single crystals of ternary chalcogenides for laser applications,” Proc. SPIE 4412, 342–350 (2001).
[CrossRef]

A. Yelisseyev, S. Lobanov, L. Isaenko, and J.-J. Zondy, “Spectroscopic study of neodymium-doped LiInS2 single crystals,” Proc. SPIE 3749, 687–688 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

W. Chen, J. Burie, and D. Boucher, “Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm,” Rev. Sci. Instrum. 67, 3411–3415 (1996).
[CrossRef]

Solid State Commun. (2)

O. Bidault, S. Fossier, J. Mangin, P. Strimer, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Study of the pyroelectricity in LiInS2 crystal,” Solid State Commun. 121, 207–211 (2002).
[CrossRef]

K. Kuriyama and T. Kato, “Optical band gap and photoluminescence studies in blue-band region of Zn-doped LiInS2 single crystals,” Solid State Commun. 89, 959–962 (1994).
[CrossRef]

Thin Solid Films (1)

K. Kuriyama and J. Saitoh, “Preparation and optical properties of LiInS2 thin films,” Thin Solid Films 111, 331–337 (1984).
[CrossRef]

Other (19)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd revised ed. (Springer, Berlin, 1999).

A. Yelisseyev, L. Isaenko, S. Lobanov, J.-J. Zondy, A. Douillet, I. Thénot, Ph. Kupecek, G. Mennerat, J. Mangin, S. Fossier, and S. Salaün, “New ternary sulfide for double applications in laser schemes,” in Advanced Solid State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 2000), pp. 561–568.

S. K. Kovach, E. E. Semrad, Yu. V. Voroshilov, V. S. Gerasimenko, V. Yu. Slivka, and N. P. Stasyuk, “Preparation and principal physicochemical properties of alkali metal indates and thioindates,” Inorg. Mater. 14, 1693–1697 (1978); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 14, 2172–2176 (1978)].

Z. Z. Kish, V. B. Lazarev, E. E. Semrad, H. Yu. Peresh, and I. V. Galagovets, “Some properties of single crystals of LiInS2 and NaInS2,” Inorg. Mater. 20, 647–649 (1984); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 750–752 (1984)].

J. Brückner, “I-III-VI Verbindungshalbleiter mit Lithium als Gruppe I-Element: Kristallzüchtung und Charakterisierung,” Ph.D dissertation thesis (Albert-Ludwigs University, Freiburg, Germany, 1997).

Z. Z. Kish, A. S. Kanishcheva, Yu. N. Mikhailov, V. B. Lazarev, E. E. Sempad, and E. Yu. Peresh, “Synthesis and crystal structure of lithium thioindate LiInS2,” Soviet Physics/Doklady (Physical Chemistry) 30, 36–38 (1985); [transl. from Dokl. Akad. Nauk SSSR 280, 398–401 (1985)].

American National Standard, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987, IEEE, New York, 1988.

Z. Z. Kish, E. Yu. Peresh, V. B. Lazarev, and E. E. Semrad, “Systematics and the rules of variations in the properties of AIBIIIC2VI-type compounds,” Inorg. Mater. 23, 697–703 (1987); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 23, 777–784 (1987)].

Ch. Ebbers, “Summary of known nonlinear properties of LiInS 2,” preprint UCRL-ID-116744 (Lawrence Livermore National Laboratories, Livermore, Calif., 1994).

Yu. M. Andreev, L. G. Geiko, P. P. Geiko, and S. G. Grechin, “Optical properties of a nonlinear LiInS2 crystal,” Quantum Electron. 31, 647–648 (2001); [transl. from Kvantovaya Elektron. (Moscow) 31, 647–648 (2001)].
[CrossRef]

Yu. M. Andreev, V. V. Badikov, P. P. Geiko, and S. G. Grechin, “Fulfillments of phase-matching conditions and optical characteristics of lithium thioindate nonlinear crystals,” Atmos. Oceanic Opt. 14, 1001–1004 (2001); [transl. from Optika Atmosphery i Okeana 14, 1087–1090 (2001)].

C. Ebbers, Lawrence Livermore National Laboratory, Livermore, Calif. 94550, personal communication, 2000).

S. Fossier, “Métrologie des propriétés optiques de cristaux massifs; Etude de LiInS 2, matriau optiquement non linaire pour l’infrarouge moyen,” Thèse de Doctorat (Universit de Bourgogne, France, 2002).

V. S. D’Ordyai, V. A. Stefanovich, E. I. Pan’ko, V. B. Lazarev, E. Yu. Peresh, and Z. Z. Kish, “Raman scattering in LiInS2,” Inorg. Mater. 24, 461–464 (1988); [transl. from Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 555–559 (1988)].

L. Isaenko, A. Yelisseyev, L. Lobanov, I. Vasilyeva, V. Petrov, V. Nadolinny, J. Smirnova, and J.-J. Zondy, “Effect of deviation from stoichiometry on photoinduced absorption in LiInS 2 nonlinear crystals,” presented at the 8th European Conf. on Solid State Chemistry (ECSSC-8), July 4–7, 2001, Oslo, Norway.

G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS 2 and AgGaSe 2,” MRS Bulletin, July 1998, pp. 28–36.

Yu. M. Andreev, V. V. Badikov, V. G. Voevodin, L. G. Geiko, P. P. Geiko, M. V. Ivashchenko, A. I. Karapuzikov, and I. V. Sherstov, “Radiation resistance of nonlinear crystals at a wavelength of 9.55 μm,” Quantum Electron. 31, 1075–1078 (2001); [transl. from Kvantovaya Elektron. (Moscow) 31, 1075–1078 (2001)].
[CrossRef]

K. V. Diesperov and V. G. Dmitriev, “Effective nonlinear coefficient for sum-frequency generation with collinear phase matching calculated taking account of the birefringence in biaxial crystals,” Quantum Electron. 27, 433–436 (1997); [transl. from Kvantovaya Elektronika (Moscow) 24, 445–448 (1997)].
[CrossRef]

S. Zelt, Fabereicht Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany (private communication, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Fragment of the orthorhombic unit cell structure (the box frame gives the orientation of the unit cell). The 3 empty areas materialized with light gray spheres indicate the location of octapores.

Fig. 2
Fig. 2

Polarized transmission spectra of an annealed LIS sample (thickness 5 mm), not corrected for the Fresnel loss.

Fig. 3
Fig. 3

Thermal-expansion coefficients of LIS along the axes Xb, Ya, Zc, from -20 °C to +100 °C.

Fig. 4
Fig. 4

Infrared reflection curves (symbols) recorded with polarized light with an electric field parallel to the crystallographic axes aB1 modes, bB2 modes, and cA1 modes. The continuous lines represent in each case the best-fit reflectivity curves calculated with the model in Eqs. (12) and (13).

Fig. 5
Fig. 5

Polarized Raman spectra (shifted for reasons of clarity) recorded at room temperature. The experimental configurations b(aa)b, c(bb)c, and b(cc)b correspond to A1 modes, c(ba)c to A2 modes, b(ca)b to B1 modes, and a(cb)a to B2 modes.

Fig. 6
Fig. 6

Principal refractive indices of LiInS2 as computed from Eqs. (21)–(23). The inset plots show the UV and mid-IR portions on an expanded scale and also a comparison with a calculation based on the Sellmeier expansions from Ref. 56 (dashed curves).

Fig. 7
Fig. 7

Angle VZ between the optic axes and the Z axis in LIS calculated with the Sellmeier expansion of Ref. 56 (dashed curve), and the new Sellmeier expansion (Eqs. (21)–(23)) (solid curve).

Fig. 8
Fig. 8

Phase-matching angles for type II (eoe or oee) SHG in the X–Y principal plane (main frame) and type II (oeo or eoo) SHG in the Y–Z plane (inset frame) of LIS. The fundamental source for λ<2.65 µm (λ>2.75 µm, respectively) is the idler wave of a Nd:YAG-pumped nanosecond LiNbO3 parametric oscillator (the frequency-doubled radiation from a free-electron laser). The symbols refer to experiments, while the solid curves are calculated from Eqs. (21)–(23). The dashed curves are computed from the Sellmeier equations of Ref. 56.

Fig. 9
Fig. 9

Stereographic projections of the SHG in the first octant of LIS calculated for wavelengths representative of the Hobden classes. Type I (ssf) interaction (solid curves) and type II (fsf, sff) interactions (dashed curves). The wavelength annotations refer to the fundamental ones.

Fig. 10
Fig. 10

SHG phase matching in the principal planes of LIS. Thick curves in the lower part show fundamental wavelengths for which deff0, and thin curves indicate cases where deff vanishes. The inverse group velocity mismatch GVM (Δ31=v3-1-v1-1 and Δ32=v3-1-v2-1, where v1, v2, v3 denote the group velocities ωi/ki at λ1, λ2, and λ3) is shown in the upper part for the cases where deff0. The solid (dashed) curves correspond to the branch with longer (shorter) wavelengths.

Fig. 11
Fig. 11

SHG internal angular acceptance (bottom) and walk-off angles (top) in the principal planes of LIS. Thick solid curves correspond to the branches with longer wavelengths from Fig. 10, and thick dashed curves correspond to the branches with shorter wavelengths. Only the cases with deff0 are included.

Fig. 12
Fig. 12

Experimental angular tuning curves for type II SHG of λ=2590 nm in the X–Y plane (at ΦPMφPM=66.2°, blank circles) and in the Y–Z plane (at ΦPMθPM=27.9°, black circles). The larger acceptance angle in the Y–Z plane is due to the much smaller ΔnYZ=-0.007 birefringence as compared with ΔnXY=-0.035 (Fig. 6). The walk-off angles are ρ1ρ3=12.2 mrad (X–Y) and ρ2=2.8 mrad (Y–Z). The crystal lengths are L=6 mm (sample LIS(1) used in X–Y) and L=7 mm (sample LIS(2) used in Y–Z plane); see Subsection 8.A. The fundamental beam (diameter 2ω02.6 mm) is the idler output of a ns Nd:YAG-pumped LiNbO3 OPO.

Fig. 13
Fig. 13

Type I (ooe) phase matching for sum- and difference-frequency generation in the X–Z plane of LIS and several values of the polar angle: 0°-NCPM (thick solid curves 1), 20° (curves 2), 30° (curves 3), 35° (curves 4), 40° (curves 5) and 45° (curve 6). The wavelengths are such that λ3-1=λ2-1+λ1-1, with λ1>λ2>λ3. The curves are terminated at the left and top side by the transparency range of the crystal.

Fig. 14
Fig. 14

Type II (eoe and oee) phase matching for sum- and difference-frequency generation in the X–Y plane of LIS and several values of the azimuthal angle φ: 35° (curves 1), 40° (curves 2), 50° (curves 3), 60° (curves 4), and 90° NCPM (thick curves 5). The curves are terminated at the left and top side by the transparency range of the crystal.

Fig. 15
Fig. 15

Effective nonlinearity for type I (ssf, solid curves) and type II (fsf, dashed curves) SHG outside the principal planes of LIS as a function of the azimuthal angle φ. The labels indicate the fundamental wavelengths corresponding to the (φ, θ) phase-matching loci of Fig. 9.

Fig. 16
Fig. 16

Effective nonlinearity for type I (ssf, solid curves) and type II (fsf, dashed curves) downconversion of λ3=1064 nm radiation (optical parametric generation, amplification, or oscillation) to three selected idler wavelengths λ1=4, 7, 10 µm for propagation outside the principal planes of LIS as a function of the azimuthal angle φ.

Fig. 17
Fig. 17

Idler spectra (the labels indicate FWHM) that demonstrate the achieved tunability with the LIS-based OPA. The black circles show the experimentally achieved output idler energy, the blank circles show the achieved (internal) signal gain, and the diamonds show the applied seed (signal) energy.

Fig. 18
Fig. 18

Cross-correlation traces at two idler wavelengths obtained by sum-frequency mixing with a 820-nm, 300-fs reference pulse. The deconvolved Gaussian pulse durations (FWHM) are in both cases 575 fs.

Fig. 19
Fig. 19

Wavelength and angle tuning characteristics of type II (eoe) DFG of two cw Ti:sapphire lasers in LIS. The solid curves are calculated from the Sellmeier equations of Subsection 6.A.

Fig. 20
Fig. 20

Mid-IR DFG spectral tuning curve in pump tuning mode around λ3765 nm. The other wavelength was fixed at λ2=865.3 nm. In this frequency scan, we could observe atmospheric water-vapor absorption lines in laboratory ambient air over a 42.5-cm open path between the LIS crystal and the HgCdTe detector.

Fig. 21
Fig. 21

Measured pulse energy with crystal inserted (squares) and without it (diamonds). The drop in transmitted energy (last square) indicates damage formation. Inset: Damage threshold, expressed as fluence, versus beam radius at the crystal surface.

Tables (6)

Tables Icon

Table 1 Principal Normalized Thermo-Optic Coefficients βj=(1/nj)dnj/dT=a1+a2T of LIS [Eq. (10)] at Four Laser Wavelengths

Tables Icon

Table 2 Zone-Center Phonon Wave Numbers (ν¯TO/ν¯LO) and Damping (γ¯TO/γ¯LO), in cm-1

Tables Icon

Table 3 Apparent Electro-Optic Coefficients of LIS; 3(X) and 3(Y) Represent the Values of r33eff Obtained for a Light Propagation along X and along Y, Respectively

Tables Icon

Table 4 Phase-Matching Conditions for Type II SHG and DFG in LiInS2

Tables Icon

Table 5 Fitting Parameters Describing the Thermal and Wavelength Dispersion of the Principal Thermo-Optic Coefficients of LISa

Tables Icon

Table 6 Summary of the Main Physical Properties of LiInS2

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

Cp(T)=114.02-5708×T-1-187540×T-2,
Cp(T)=12RF(xD)+k=1NckTk,
F(xD)=3xD30xDx4exdx(ex-1)2.
αi=1LidLidT,
αX=1.61×10-5+1.4×10-8T,
αY=0.89×10-5+0.7×10-8T,
αZ=0.66×10-5+0.9×10-8T,
γji=1njLid(njLi)dT,
βj=γji-αi.
βj(λ, T)=a1(λ)+a2(λ)T,
Γvib=12A1+12A2+12B1+12B2.
(ω)=-i=j=1NΩj,LO2-ω2+iγj,LOωΩj,TO2-ω2+iγj,TOω
R(ω)=(ω)-1(ω)+12.
ν¯TO,k2=1π2c2(αk-δαk)1mk+1mC,
(nX-2+r13E3)X2+(nY-2+r23E3)Y2+(nZ-2+r33E3)Z2+2r42E2YZ+2r51E1XZ=1.
ni(E3)=ni-12ni3ri3E3,
δ(Lj)=Ljd¯3jE3,
δ(niLj)=niLjd¯3j-12ni2ri3E3.
ri3eff=-2ni2d¯3j-12ni2ri3
pσ=χ(2)(ω±0; ω, 0)2Cv0me2(ωe2-ω2)2μωi2NAe23A+BC+3D.
nX2=6.686059+0.1385833λ2-0.05910334+2047.46509λ2-897.7476,
nY2=7.095493+0.1422326λ2-0.06614640+2511.08936λ2-988.2024,
nZ2=7.256327+0.15072λ2-0.06823652+2626.10840λ2-983.0503.
sin VZ=nZ(nY2-nX2)1/2nY(nZ2-nX2)1/2.
ak(λ)=C0,k+C1,kλ2-λ01,k2+C2,kλ2-λ02,k2.
n(λ, T)n(λ, T0)=expa1(λ)(T-T0)+a2(λ)(T-T0)221+a1(λ)(T-T0)+a2(λ)(T-T0)22,
d(2)=0000d150000d2400d31d32d33000.
deffssf=2d15 sin θ cos δ(cos θ sin φ sin δ-cos φ cos δ)×(cos θ sin φ cos δ+cos φ sin δ)+2d24 sin θ cos δ(cos θ cos φ cos δ-sin φ sin δ)×(cos θ cos φ sin δ+sin φ cos δ)+d31 sin θ sin δ(cos θ sin φ cos δ+cos φ sin δ)2+d32 sin θ sin δ(cos θ cos φ cos δ-sin φ sin δ)2+d33 sin3 θ cos2 δ sin δ,
defffsf=deffsff=-d15[sin θ cos δ(cos θ sin φ sin δ-cos φ cos δ)2+sin θ sin δ(cos θ sin φ sin δ-cos φ cos δ)×(cos θ sin φ cos δ+cos φ sin δ)]-d24[sin θ cos δ(cos θ sin φ sin δ+sin φ cos δ)2+sin θ sin δ(cos θ cos φ cos δ-sin φ sin δ)×(cos θ cos φ sin δ+sin φ cos δ)]-d31 sin θ sin δ(cos θ sin φ sin δ-cos φ cos δ)×(cos θ sin φ cos δ+cos φ sin δ)-d32 sin θ sin δ(cos θ cos φ cos δ-sin φ sin δ)×(cos θ cos φ sin δ+sin φ cos δ)-d33 sin3 θ sin2 δ cos δ
tan 2δ=cos θ sin 2φcot2 VZ sin2 θ+sin2 φ-cos2 θ cos2 φ
deffeoe=deffoee=-(d24 sin2 φ+d15 cos2 φ)(XYplane),
deffoeo=deffeoo=-d24 sin θ(YZplane),
deffooe=+d31 sin θ(XZplane, θ<VZ),
deffoeo=deffeoo=-d15 sin θ(XZplane, θ>VZ),
Δk(δΦ)=γCPMδΦ+γNCPM(δΦ)2+ ,
deff2=ΓSHτω2τ2ωc0n2λ316π2Lh,
deff2(LIS)deff2(KTP)=ΓSH(LIS)ΓSH(KTP)n2(LIS)n2(KTP)L(KTP)L(LIS)h(KTP)h(LIS).
deff[LIS(2)]=1.36(±15%)deff(KTP),
deff[LIS(1)]=3.05(±15%)deff(KTP),
deff[LIS(3)]=3.15(±15%)deff(KTP).
deff2(LIS)deff2(AGS)=E2ω(LIS)E2ω(AGS)[1-R(AGS)]3[1-R(LIS)]3n3(LIS)n3(AGS),
d31(LIS)=7.25(±5%)pm/V,
d24(LIS)=5.66(±10%)pm/V,
d33(LIS)=-16(±25%)pm/V.
Δν1=1.722πLΔkν1ν1PM-1,
Δkν1=2πcn3(φ)-λ3n3(φ)λ3-n1(φ)+λ1n1(φ)λ12πΔ31.
S2-+Li+S-+Li0.

Metrics